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An improved stress-dependent model for magnetomechanical 
effect simulation of Terfenol-D rods 

 
 

Abstract. Terfenol-D is one of the smart materials widely used in the fabrication of magnetostriction based sensors and actuators due to its high 
material properties. However, using Terfenol-D in industrial applications rely on the ability of predicting its hysteresis by mathematical models. In this 
paper, we present an improved hysteresis model for reproducing hysteresis curves of Terfenol-D. Levenberg–Marquardt algorithm is used to 
estimate the optimal parameters of the improved model. The simulation and experimental results show the performances of the proposed model. 
 
Streszczenie. Artykuł zajmuje się Terfenolem-D – dość powszechnie stosowanym materiałem magnetostrykcyjnym. Niestety dotychczas brakowało 
matematycznego modelu tego materiału uwzględniającego histerezę. Wykorzystano algorytm Levenberg–Marquardt do bardziej szczegółowego 
opisu parametrów Terfenolu. (Ulepszony model matematyczny opisujący efekt magnetostrykcyjny  Terfenolu-D) 
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Introduction 
 Terfenol-D is a sort of the magnetostrictive materials 
widely used in the manufacturing of sensors and actuators 
due to its superior characteristics such as high force (up to 
15kN), large strain (up to 2000ppm) and fast speed 
response (up to 100 kHz) [1, 2, 3]. Like any other 
ferromagnetic materials, Terfenol-D presents hysteresis, 
which makes its magnetomechanical behavior nonlinear [4]. 
This nonlinearity and hysteresis make it difficult to control. 
Modelling the hysteresis of Terfenol-D is more problematic 
than that of usual ferromagnetic materials. One complexity 
is that the hysteresis of Terfenol-D is a function of 
mechanical parameters like stress and strain [5, 6, 7]. In 
order to accurately model the magnetomechanical 
behaviour of Terfenol-D, models for magnetic materials 
must be modified.  
 A number of mathematical models have been developed 
to describe hysteresis of Terfenol-D, such as Preisach 
model [8], Prandtl–Ishlinskii model [9, 10], Jiles-Atherton 
model [11, 12], hyperbolic tangent model [13], and 
homogenized energy model …etc. 
 The Preisach model [14], was at first developed for 
ferromagnetic materials and is now frequently used to 
model magnetostrictive materials such Terfenol-D. The 
model developed for regular magnetic materials has only a 
single input parameter and a single output one. Considering 
that Terfenol-D has four parameters (magnetization, 
external magnetic field, strain, and stress), different choices 
for input and output are possible when using the Preisach 
model [15]. However, Preisach model is developed based 
on the first order reversal curves that are obtained under 
fixed conditions which are driving frequency and 
mechanical load. The Preisach model needs a large 
number of parameters to be identified, thus the model is not 
easily used in the case of the changing operating conditions 
[16]. 
 The homogenized energy model [17] is established 
based on modeling the Helmholtz free energy of domain 
wall in ferromagnetic materials. In [18] the homogenized 
energy model is adopted to build up a magnetomechanical 
hysteresis model by assuming the physical variables to be 
functions of the mechanical load. The weighting functions 
similar to the Preisach model needs experimental data to be 
identified. One of the limitations of this approach is that a 
big experimental data is required for determination of the 
weighting function parameters. 

 The Jiles–Atherton (JA) model is an energy-based 
physical model for modelling hysteresis of ferromagnetic 
materials under zero stress and varying magnetic field. In 
[19], the JA model is modified to describe the 
magnetoelastic behavior of magnetic materials. Obviously 
the JA model parameters are related not only to the 
mechanical load stress, but also on the given bias of the 
magnetic field [20]. Consequently, this mathematical model 
is not appropriate to globally describe the magnetostrictive 
effect of materials. There is a possibility to use the JA 
model and the theory of magnetomechanical effect to 
describe the magnetomechanical behavior of Terfenol-D 
under various mechanical and magnetic conditions, but this 
is not much studied in the literature. 
 The arctangent model covers the physical properties of 
Terfenol-D in a very accurate way [7]. A drawback of this 
method is that the parameters of the hysteresis curves have 
to be calculated numerically. This leads on one hand to a 
slight increase of computation time and on the other hand to 
some complications with regard to the numerical solution of 
the problems.  
 In this paper, an improved magnetomechanical 
hysteresis model of Terfenol-D devices for precise and 
controlled applications is established based on an 
arctangent effective field model and the theory of 
magnetomechanical effects. The definition of effective 
magnetic field used here is different from that in previous 
works [1, 6, 7]. The effective magnetic field is not part of the 
model parameters and it is expressed in terms of magnetic 
flux density B instead of magnetization M, then the 
complexity of the model is significantly decreased. 
Levenberg–Marquardt algorithm is used to estimate the 
optimal parameters of the proposed model. The latter are 
considered in finite element analysis to conduct simulations 
of magnetostrictive behavior of Terfenol-D rods.  
Comparisons between the calculated and measured results 
show the accuracy of the proposed model. 
 

Hysteresis model of Terfenol-D 
 In this section, we develop an improved hysteresis 
model for Terfenol-D rods, by extending the arctangent 
model. For magnetostrictive materials, there is an algebraic 
relation between magnetic field and magnetostriction 
phenomena. The following polynomial function relates 
magnetic flux density B to displacement: 
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where 0  and 1  are constants of mechanical load and 

m
ij  is the magnetostriction. By using this relation, 

magnetostriction control is achieved by controlling the 
magnetic flux density. 

Magnetostriction 
m
ij takes into account only the strain 

caused by magnetization. For total strain , the mechanical 
strain should be added. 
 The parameters 0  and 1  determine how the 

magnetostriction curve changes when the applied stress is 
changed. By considering a linear relationship between i  

and  , we obtain: 
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 The magnetostriction effect as a mechanical 
phenomenon can be correlated to the magnetic phenomena 
using the arctangent model in order to study the effect of 
stress on the magnetic behavior of Terfenol-D [21]. Based 
on both the thermodynamics and mechanical equilibriums, 
we describe the influence of stress on the magnetization 
with an additional term in the expression witch is the 
effective field. 
 For weak and moderate fields, the magnetic flux density 
can be described by an arctangent function, given by: 
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identified parameter respectively,  
 It was established that for a wide range of stress, the so-
called effective field ),( BHi

 was just a product of two 

terms, function of stress k(σ) and function of magnetic field  
density. The effect of the magnetostriction phenomenon 
due to the applied magnetic field on a terfenol-D rod can be 
explained in mechanical constitutive laws [22]. 
 The magnetization at any stress level can be implicitly 
calculated as: 
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where 
m
kl , ),( BH c

i
 and ),(0 BH i

 represent the 

magnetostriction tensor, the magnetic field induced by the 
effect of magnetostriction and  the magnetic field at zero 
stress depending only on the magnetic flux density B 
respectively. 
 The parameters of the magnetostrictive model were 
found for each applied stress value by fitting the calculated 
curves to the measured curves by using Levenberg 
Marquardt Algorithm. 
 
Parameter optimization method 
 Levenberg Marquardt algorithm (LMA) [23] is a Newton-
type gradient iterative method, that locates a local minimum 
of an objective function defined as the sum of squares of 
difference between model estimated outputs and 
experimental data. Levenberg Marquardt method is just a 
switch rule between steepest descent and Gauss Newton 
method. When the solution is far from a local minimum, the 
algorithm behaves similar to steepest descent method with 
guaranteed convergence. Once the solution is close to the 

local minimum, it becomes the Gauss Newton method and 
shows fast convergence [24].    
 For the Terfenol-D rod, strain and magnetization are 
measured using an experimental setup at five different 
loads from 0 to 24 MPa. The parameters in equations (1), 
(3) and (4) are selected to minimize the sum of squares 
error function given by the equation (6):  
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 Where	 expB ,	 compB  and n  are the experimental value 

of magnetic flux density data, the computed one using 
magnetic and magnetostrictive models and a number of 
measurement data point  respectively.  The number n 
should be chosen sufficiently large in respect with the 
computational performances and reaction to fast changes. e 
is the prediction error. After the definition of the objective 
function, this latter is minimized with respect to the θ  vector 

 m ...,3,2,1  , where m is number of the unknown 

parameters. The minimization is carried out, in such a way, 
that it alloys to get the best matching between model and 
experimental data.  
The LM algorithm is described as following:  
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where G, J ,   and k are the gradient of the cost function, 
Jacobian matrix, damping parameter and the iteration 
number respectively. 
 The Jacobian matrix is a n x m matrix defined by: 
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 As shown in (7) when     is large, the LMA tends 
towards the steepest descent method. And when   has a 
small value the LMA approaches the Newton method. In 
case of intermediate , the LMA will moderate between the 
steepest and the Newton method. During the optimization 
process, the LMA is used to adapt the values of   . If the 

solution is successful )()( kkk II   , is decreased to 
exploit more the information contained inside 

  )()(.)()( '' kkkk JJdiagJJ    , if the  iteration happens 

to result in a worse approximation )()( kkk II   ,   is 
increased in order to pursue closely the gradient. 
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where r is the factor for increasing or decreasing  . 
 

 The procedure of parameter identification process with 
LMA is given as follows:  
 

Step 1: the iteration number kk, initial parameters 1  and 1  
are defined. 

Step 2: k used to calculate ),( k
comp kB  and )(I  by equations 

             (1), (3), (4) and  (6) 
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Step 3: calculate )(J  by equation (9) 

Step 4: calculate k  by equation (7) 

Step 5: kkk  1 used to compute ),( k
comp kB   and )( kI    

            by equations (1),(3), (4) and (6).  

If )(I)(I kkk   then r/k1k   and
kk1k   otherwise r.k1k   and k1k  

 
Step 6: if k>kk LMA terminates and records 

            1k , otherwise k=k+1 go to  Step3.  
 

 In Fig. 1, the dependence of the total error (e) on the 
number of iterations is shown. It can be seen that the error 
quickly decreases and the search algorithm allows us to 
achieve the optimal set of parameters with minimum 
computational effort. 

 
Fig.1: Total error depending on the number of iterations  
 

 The parameters, in equation (1) (3) and (4), are 
determined by Levenberg-Marquardt Method. The 
hysteresis magnetic curves at different load up to 24 MPa 
were compared to experimental data (fig. 2) [25], a good fit 
is obtained and it is seen that the magnetization 
continuously moves to higher fields with increasing stress. 
The obtained coefficients are listed in Table 1.   

In the improved model, we use the difference between 
the magnetic field value ),( BH i

 at  ref   and a value 

given at compressive stress load. The resulting field is used 
to be considered as an additional field and thus the effective 
field is given by:  
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Table 1: identified model parameters  

 
 It is important to note that we can choose the identified 
parameters for each value of applied compressive stress 

given by the table 1 as initial values to identify magnetic 
hysteresis loops at another applied stress. In this case, the 
size of the magnetic flux density vector and the magnetic 
field one must be the same. The results obtained from 
running LM algorithm to identify the optimal parameters of 
the improved model are listed in table 1. 
 

 
Fig.2. Hysteresis curves for different compressive stress values. 
 

Magnetomechanical finite element formulation 
 Nowdays, an accurate modelling of non-linear 
magnetostrictive materials such as Terfenol-D is greatly 
needed. In this context, the optimal parameters, obtained 
from LMA, are used as numerical input to the simulation of 
the Terfenol-D rods behavior by means of a finite element 
code implemented using Matlab. 

 

 The partial differential equation of the magnetic problem, 
can be written as: 
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where µ0 is the magnetic vacuum permeability, zA  the 

magnetic potential component vector and 
szJ


 the current 

source density. The magnetization components xM  and 
yM   

are a function of mechanical stress when the 
magnetostrictive property is included in the model. 
 The mechanical deformation of the rod, can be 
expressed as: 
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were v
if represents the body forces,

iU  is the mechanical 

displacement,  is the volume density, jx  is the nodal 

coordinate at node (i) and n the stress tensor order. 
  

 Many authors considered the equation (14) when 
solving the coupling magnetomechanical problem between 
magnetic field and mechanical deformation. In the most 
cases, the mechanical deformation equation is simplified to 
its one dimensional variation form. Consequently, only a 
one component of the strain has been usually considered in 
several studies [26, 27] but there is also a method based on 
definition of an equivalent stress of multi axial magneto-
mechanical stress. The equivalent stress is deduced from 
one dimensional experimental data. In the current study, the 
strain   and the stress   are considered tensors 
quantities by defining two directions of deformations along x 
and y Cartesian coordinates.   
 The finite element formulation of the 
magnetomechanical problem using the principle of 

Parameters Unit            values   

0  
2

m

A
 
 
 

 -24 .496.10  

1  
2

1m
Pa

A
 

 
 

 -101 .0007.10  

2  
4

m

A
 
 
 

 -33 .648 .10  

    
3   

4
1m

Pa
A

 
 
 

 -117.7391.10  

  1 
-111.73588.10  

k  1 
71.412.10  

0 50 100 150 200 250
10

-3

10
-2

10
-1

10
0

10
1

 

 

X: 224
Y: 0.003754

Number of iterations 

E
rr
o
r 
(e

)



118                                                                               PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 97 NR 1/2021 

orthogonality between the residual function 
iR  and a 

weighted function i , is given as follows: 
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By replacing iR  in equation (15), we obtain the following 

finite element integral formulation: 
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In the case of elastic deformation, the stress tensor 

ij behavior depends on the strain components ij , which 

is given by:                                                                       
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where E is the Young modulus and  is Poisson’s ratio. 
The Terfenol-D rod, is assimilated to a plate of infinite 
dimension that deforms in bending only. In our case, we are 
handling the following 2D magnetomechanical equations:  
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 Discretization and assembly of the local stiffness matrix 
and force vector source of each element constituting the 
plate lead to the following algebraic systems: 
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where [S], [K], [G] and [A] are electromagnetic stiffness 
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 In fact, we may construct the system equations of 
magnetomechanical coupled phenomena given by an 
algebraic system expressed as follows:  
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Fig.3: Flow chart of the FEM  
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 The numerical solution of this problem is based on, finite 
element method, thanks to its superiority on solving 
nonlinear and complex geometry structures by integration of 
behavior laws. The flow chart of the FEM program is shown 
in fig. 3.  
 
Application and results  
 The optimal parameters obtained from LMA can be 
injected in the finite element model to calculate the 
magnetostrictive strain values of Terfenol-D rods in 
response to applied magnetic field and compressive stress. 
Thus, we should calculate the magnetization, flux density 
and magnetic force under the same conditions to the 
problem configuration depicted in Fig. 4. 
 

 
Fig.4. Schematic diagram of the magnetostrictive device  
 

 The device consists of a Terfenol-D rod under different 
loading and magnetic field values. We assume that the 
bottom end of the rod is fixed while the top one is free, and 
receive the mechanical load. The compressive stress is 
applied by a prestress bolt and a spring washer. The spring 
is quite soft to allow a constant compression for each stress 
state, when the rod changes size. The Terfenol-D rod is 
surrounded by a magnetic coil fed by a DC power supply 
unit which ensure the desired magnetic field. An optical 
encoder measures the displacement of the actuator. A pick-
up coil measures the flux density B inside the Terfenol-D 
rod, and a load cell measures the force applied to the rod. 
Finally, an electronic circuit inside the power supply unit 
measures the current. The measurements made by the 
sensors are fed to a data acquisition card after being 
amplified by an electronic circuit. Using the test rig and a 
data collection method detailed, the major hysteresis curves 
of Terfenol-D are obtained at 5 different stress levels up to 
24 MPa. At each stress level, the displacement produced by 
the actuator is also recorded. 
  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig.5. Magnetostriction curves versus magnetic field at different 
compressive stress values. (a) 0MPa. (b)-6MPa. (c)-12MPa. (d)-
18MPa. (e)-24MPa 
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In Fig. 5, the curves of magnetostriction versus the 
magnetic field at different loads show the impact of the 
applied stresses on the resulted strain. The 
magnetostriction of the Terfenol-D rod is illustrated for 
applied stress varying from –6 MPa to –24 MPa [25, 28]. 
There is an excellent agreement between the experimental 
and numerically computed results for all applied stresses. 
 This analysis shows that the prediction of the improved 
model gives a good concordance with experimental data, 
specially by considering the linear relationship between i  

and σ in the polynomial approximation of  . 
 The finite element computation permits also to describe 
the operating process of the Terfenol-D devices and to 
develop models, which can be helpful for the design and 
optimization of new magnetostrictive structures. 
 
Conclusion 
 An improved load dependent model for hysteresis in 
Terfenol-D rods is presented. The basis of the developed 
method is the arctangent effective field model. The model 
parameters were identified using Levenberg–Marquardt 
algorithm.  In order to validate the improvements, a set of 
experimental hysteresis curves of Terfenol-D at different 
loads was used to identify the model parameters.  
 Comparison between the experimental and calculated 
results shows that the improved model can better describe 
magnetomechanical hysteresis behaviors of Terfenol-D 
rods under a varying compressive stress. The model 
parameters can be injected in a finite element analysis to 
predict the mechanical elongation of rods. Moreover, the 
formulation of the proposed model is quite simple, and has 
clear physical meaning which can ensure the simulation 
requirements, such as: speed, accuracy and good 
convergence. Finally, the improved model has a very strong 
engineering capabilities and can be considered in 
magnetostrictive devices designing and fabrication. Future 
studies will deal with more complex models, taking into 
account perturbing magnetic field, temperature and 
anisotropy effect in Terfenol-D rods. 
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