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Abstract. Multistate reliability models are generally complicated and the state space has a large number of states. Evaluating the performance 
distribution of complex series parallel to the repairable multi-state system with dependent linear components. They are much more complex and 
present major difficulties in defining the system and the performance of the MSS multistate reliability assessment system. A new approach is 
introduced to extend the classical theory of reliability based on the binary hypothesis to the repairable multi-state system (MSS). Generally, some of 
the stochastic processes of traditional methods did not provide an assessment of the reliability of the MSS system due to the enormous states of the 
system. This article is based on the hybridization of the Markov stochastic process and the universal generation function technology (UGF) which 
deals with the most sophisticated and realistic models ranging from perfect operation to complete failure in which components and systems can take 
many states. We consider the case where the performance and probability distributions of certain components depend on the linear of another 
component or group of components. 
 
Streszczenie. Zaprezentowano nowa metodę rozszerzająca klasyczną teorię niezawodności bazującą na hipotezie naprawialnych systemów 
wielostanowych MSS. Artykuł bazuje na hybrydyzacji stochastycznego procesu Markova i technologii uniwersalnej funkcji UGF. Rozważono 
przypadek kiedy gęstość prawdopodobieństwa pewnych składowych zależy  liniowo od innych składowych. (Określenie niezawodności w 
wielostanowych naprawialnym systemie z hybrydyzacją procesu Markova  i użyciem funkcji UGF)  
 
Keywords: Stochastic process, System repairable,Multi-state (MSS), Universal generating moment function (UMGF), linear dependence. 
Słowa kluczowe:niezawodność, proces Markova, uniwersalna funkcja UGF. 
 
 

Introduction 
One of the most important problems during the design 

phase in many complex industrial applications system is the 
reliability assessment, reliability engineers are called upon 
to evaluate the reliability of the developing system.  

Traditionally the classical reliability theory is based on 
the binary assumption that the system is either working 
perfectly or completely failed. However, in many real life 
situations we are actually able to distinguish among various 
levels of performance for power systems. Less effort has 
been devoted to develop methods for analyzing reliability or 
(availability) of multi-state systems. In this case, it is 
important to develop MSS reliability theory. Most of 
research works in MSS reliability analysis extend the binary 
case to the multi-state case. In order to assess a complex 
reparable MSS system reliability [1,2] a stochastic process 
and universal generating function methods are suggested. 
Generally, the methods of MSS reliability assessment are 
based on four different approaches: (i) The structure 
function approach,. (ii) The Monte-Carlo simulation 
technique (iii) the stochastic process (Markov) approach 
and (iv) The universal generating function (UGF) approach. 
According to the Markov method, the model construction of 
MSS state- space diagram with all transitions between 
states is very difficult to build. The main disadvantage to 
use this model in MSS Reliability evaluation is the 
dimension damnation of the state- space. The problems 
reencountered are: (i) identifying all states and transitions 
correctly is very difficult assignment, (ii) solving model with 
hundreds of states can be hard task and (iii) Applied only to 
relatively small MSS. There are a many real industrial 
applications in with a system should be considered to be a 
MSS as in manufacturing systems, telecommunications and 
power. For the MSS, for each component a several outage 
levels performances corresponding to the degradations. 
Therefore, the reliability analysis of MSS is much more 
complex than the case of binary state system. 

The calculation of many MSS optimization problems 
where reliability measures have to be evaluated for a large 
number of states, the UGF technique is widely used. This 
technique reduces the space diagram and allows you to find 

the entire distribution of MSS performance of its 
components. The generator function, which is analogous to 
the Laplace transform, allows us, using a simple procedure, 
to obtain different probabilistic characteristics: moment of 
distribution, mathematical variance, etc. The UGF [2,3] is 
particularly effective in solving combinatorial problems. 
Allows us to write computational algorithms to solve 
combinatorial problems which include various compositions 
which cannot be reduced. The UGF allows us to build 
calculation algorithms for many reliability analysis problems. 
     In reality, the nature of the interactions between the 
components of the system and the physical nature of the 
components differ. So far, many studies have dealt only 
with the mutually statically independent between the 
components or the group of components. Some studies 
consider the opposite case.  
     This article suggests extending the combination of UGF 
to the case where the transition rate and the performance 
distribution of the surviving components are influenced by 
the failing components. Our suggested approach is valid in 
the case of a linear dependence between the components 
[4, 7]. In this work, a UGF technique extended to the case 
of dependent components will be described with an 
illustrative example 
 

Markov model for multistate component  
The methods of the stochastic process (Markov or Semi-
Markov) are widely used for the reliability analysis of SMS 
and are more universal [8, 9]. In fact, these approaches 
have been used and successfully implemented for 
assessing the reliability of multi-state power systems and 
certain types of industrial application systems even before 
MSS is theoretically defined. Stochastic process methods 
can only be applied to a relatively small MSS due to 
exhaustive state systems (the number of states increases 
considerably with the increase in the number of system 
components) [10, 11]. 
If all failures and repair times are distributed exponentially, 
then the stochastic process of distributed failure 
performance can be represented by the Markov model [12, 
13]. We assume that the component has k different states 
as shown in Figure 1. For Markov process, each transition 
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from the state s to any state m (  kms ...,,1,  ) has its own 

transition intensity designed as . 
 

 Fig.1. Markov Model Diagram of Repairable MSS Component 
 

If , then define the transition failure rate for 
the failure that cause the component transition from the 
state s to state m with performance losses. If , then 

 define the corresponding transition repair rate 

from the state m to state s with best performance. For every 

component we designate the probability 

that the Markov process which starts from the initial state 

 ( the best state) at instant will be at state at 

instant .The probabilities , can be 

found from the solution in the following homogenous 
Markov process as: 
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In our case, all transitions are caused by failures and 
repairs of the component corresponding to the transition 

intensities and are expressed by the component’s 
failure and repair rates [14, 15,16 ]. 

Therefore, the corresponding system of differential 
equations (Kolmogorov’s Equations) may be written as: 
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We assume the initial state is the best state k with a 
high performance. Therefore, solving the Kolmogorov 
equations systems equation (3) under the initial condition

, , the states probabilities 

can be obtained. 
 

Generic Model for components with dependency  
The last few years have seen the appearance of a 

number of books presenting different methods of 
quantitative estimation reliability, where the components of 
production systems are always considered to be 
independent. Until now, little research supposes the 
dependence between the components or the group of 
components without supporting the distributions of rate of 
charges and transitions on the surviving components. In 

reality, a wide range of complex systems is characterized 
by different topologies, where different kinds of interactions 
exist between system components and different physical 
kinds of components. This is one of the main assumptions 
which is true in many technical systems [17-21]. 
   We define the repartition function on surviving 
components by:h(s) ,1<h(s)<s where s is the number of 
surviving system component. 
                         If   : I independency. 

   : L Linear Dependency. 
 

Load repartition Transition rate repartition 
Consider the general case where failures can lead to 

total failure or a reduction in component performance, in 
which case different levels of capacity degradation must be 
taken into account. We denote by L (s, t) the total 
instantaneous load of the homogeneous system and l (s, t) 
the repair of the charge of the individual components. 
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s: Number of surviving component. 
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n: Total number of system component. 
 

Transition rate repartition  
But before solving the system of equations must know 

how to calculate the failure rate during dependence must 
then use the dependence function g (k). We suppose the 

value of : 
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Where  k: is the number of surviving components. 
Also for this failure rate is proportional to the component 
overload during failures. 

If   :  then it's independence.     

   : It's dependence. 
We can write that: 
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Dependency case depending on the rate of the overload on 
the components. 
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A linear dependence 
 

Combined UGF Technique to the case of components 
with linear dependency  
In recent years, a number of books have appeared, 
presenting various methods for the quantitative estimation 
of systems made up of components with different operating 
levels (Reinschke and El-Neweihi). Generally reducible 
systems are envisaged. 

The procedure used in this work is based on the 
universal z transform, which is a modern mathematical 
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technique introduced in Ushakov [5, 6, 16,]. This method, 
which is practical for digital implementation, has proven to 
be very effective for combinatorial problems of large 
dimension. In the literature, the universal z transform is also 
called the u transform. The UGF of an independent discrete 
random variable is defined as a polynomial [22- 26]: 
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where the variable  has  possible values and  is the 

probability that  is equal to . The probabilistic 

characteristics of the random variable  can be found 

using the function u(z). In particular, if the discrete random 
variable  is the MSS stationary output performance, the 

availability A is given by the probability  which 

can be defined as follows [11, 18, 19, 20]:  
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It can be easily shown that equations (12)–(13) meet 

condition . By using the operator , the 

coefficients of polynomial  are summed for every term 

with , and the probability that  is not less than 

some arbitrary value W is systematically obtained.Based on 
determined states probabilities for all components, the 
performance stochastic processes corresponding to the 
output performance for each system component j is 

correspond,  The UGF 

for each individual component should be given as: 
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Reliability indices for entire mass 
When the UGF of entire MSS has been obtained, the 

following reliability indices can evaluated easily. 
 

The entire MSS availability ܣሺݐሻ at instant ݐ ൐ 0  is evaluated 
as:        
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For an arbitrary constant demand W, the MSS 
availability a	ܣሺݐ, ݐ  ሻ at instantݓ ൐ 0 is: 
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Illustrative example 
The electrical flow is transmitted from point C to point E. 

The performance of the transformers is measured by (kV). 
Elements 1 and 2 are repairable and each has two possible 
states. A total failure state for both elements corresponds to 
an output performance of 0 kV and the operational state 

corresponds to a performance of 230 kV and 345 kV, 
respectively Fig 2, so that. 
 

   1 11 12, 0,  230 G g g kV       2 21 22, 0,  345 G g g kV   

 
The failure rates and the repair rates for these two elements 
are: 

ଶ,ଵߣ
ሺଵሻ ൌ ,	ଵିݎܽ݁ݕ	7 ଵ,ଶߤ

ሺଵሻ ൌ  1	ݐé݈é݉݁݊	ݎ݋݂								ଵିݎܽ݁ݕ	100

ଶ,ଵߣ
ሺଶሻ ൌ ,	ଵି	ݎܽ݁ݕ	10 ଵ,ଶߤ

ሺଶሻ ൌ  2	ݐé݈é݉݁݊	ݎ݋݂					ଵିݎܽ݁ݕ	80

Element 3 is a multi-state element with only minor 
failures and minor repairs. It can be in one of three states: a 
total failure state corresponding to a performance of 0, a 
partial failure state corresponding to a performance of 115 
kV, and a fully operational state corresponding to a 
performance of 765 kV. So,  

     3 31 32 33, , 0,1 15 , 765 G t g g g kv kV  .The failure rates and 

repair rates for Element 3 are:   

ଷ,ଶߣ
ሺଷሻ ൌ ,ଵିݎܽ݁ݕ	10 ଶ,ଵߣ

ሺଷሻ ൌ  ,ଵିݎܽ݁ݕ	7

ଵ,ଶߤ
ሺଷሻ ൌ ,ଵିݎܽ݁ݕ	120 ଶ,ଷߤ

ሺଷሻ ൌ  ଵିݎܽ݁ݕ	110

 
 

Fig.2. A multi-state system with 3 elements (Transformers). 
 

The total flux between points C and D passing through 
the parallel transformers 1 and 2 is equal to the sum of the 
fluxes of each of these transformers. The flow from point D 
to E is limited by the output performance of element 3. 
However, this flow cannot be greater than the flow between 
points C and D. Therefore, the flow between points C and E 
(the performance system) is: 
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According to the Markov method, we have separately 
constructed the following Kolmogorov equations for each 
subsystem: The subsystem consists of two parallel 
components. 
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 (24)                  21 22 0 345
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 (25)																												  3 3UGF G t 	

(26)					   31 32 33 0 150 765
3 31 32 33 11 11 32 g g gG t p Z p Z p Z p Z p Z p Z      	

 

According to the configuration of components, the UGF 
of subsystem UGF12 consisted of Comp1 and Comp2 
connected in parallel can be obtained using eq. (17). 
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Then, UGFs of the whole system is: 
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Taking into account that the sum of probabilities of its states 
is equal to 1. 
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We can find 2 * 2 * 3 = 12 differential equations if the 
simple stochastic Markov method has been realized. As a 
result, computing efforts will be consumed in number. 
However, the combined approach presented only needs to 
solve three differential equations of component: 

 two of order two and one of order three. 
 The further derivation of the state probabilities and the 

reliability indices of the MSS is based on the technique of 
the UGF universal generator function that can be 
implemented by simple mathematical calculation. Table 1 
shows the possible states of the system 

 
Table 1. The possible states of the system 

Ns G1 (0,  

230) 
G2 (0, 

345) 
G3 (0, 

115, 765) 
 ࢙ࡳ

1 230 345 765 575 
2 0 345 765 345 
3 230 0 765 230 
4 230 345 115 115 
5 0 0 765 0 
6 0 345 115 115 
7 230 0 765 230 
8 230 345 0 0 
9 0 0 115 0 

10 0 345 0 0 
11 230 0 0 0 
12 0 0 0 0 
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The instantaneous MSS  availability A(t)   at  t>0  
system mean performance can be calculated respectively 
by using eq. (15), (16), (17) and (18) based on the UGF of 
the entire MSS.The instantaneous MSS availability 
ݐ	ݐܽ		ሻݐሺܣ ൐ 0 
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For constant demand 575 W kV , the MSS availability

     0A t at t  .	
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Results and discussion 
These probabilities (performance distribution of the 

entire system )and availability of the system are presented 
in Figures 4(a) - 4(c)  for three threshold  demand (W) 
values of 575 kV, 345 kV  , 230 kV and  115 kV  res-
pectively. We can notice that after a certain time, the 
system becomes stable (monotonic probabilities of the sta-
tes) and the availability becomes asymptotically constant. 

 
 

Fig.3. Availability and probabilities of different levels of performance 
for w=115 kV 

 
Fig.4. Availability and probabilities of different levels of performance 
for w=230 kV   
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Fig.5. Availability and probabilities of different levels of performance 
for w=345 kV   

 
 

Fig.6. Probability of different performance 
 

The system availability at different time stages within  
[0.1 : 0.4] years  interval is shown in Figure 7. 

 

 
Fig.7. The system availability at different time stages 

 
The system reliability at different time stages within  [0.05-
0.4]years  interval is shown in table 2. 
 
Table 2. The system reliability at different time stages 
T (years ) 0.05 0.1 0.15 0.2 0.3 0.4 

R(t) 0.921 0.8399 0.7728 0.7076 0.603 0.491 
 

The reliability curve up to 5 years for optimal design policy 
is shown in Figure 8 and 9. 

 
 

 
Fig.8. The reliability curve up to 5 years for optimal design policy 

 
Fig.9. The reliability curve up to 5 yeas  

 
Conclusion 

 The previous studies in series-parallel systems have 
not been considered the systems with repairable 
components. The considered system in this study has 
components with linear failure and repair rate, in this paper 
the system Availability and reliability evolution is studied for 
a fixed value of demand in function of time. The method 
based on the hybridization of the Markov stochastic process 
and the universal generating function UGF technology. 
Analysis and the results show the decreasing evolution of 
the system reliability in function of an increasing demand.  

 The analysis of the causes of failure and the 
construction of the degradation mode of each component of 
an electrical system gives us an overview of its total 
reliability. By using the universal generator function, the 
number of states of the multistate system is substantially 
deduced. As a result, models are more easily constructed to 
calculate the reliability of the system with greater accuracy. 

The results of the study show us the causes of failure 
and the modes Degradation of electrical components and 
electrical system on which one can more accurately predict 
the system states or the lifetime of the system. 
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