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Approach to creating an ensemble on a hierarchy of clusters 
using model decisions correlation 

 
 

Abstract. In the article, an approach based on clustering is proposed, according to which the influence of an individual model is inversely 
proportional to the volumes of aggregated groups. With this approach, the influence of an individual solution of the model, which differs from others, 
is significantly increased. Aggregation of groups is made in direct proportion to the correlation of decisions. Moreover, the aggregation of groups of 
models is performed according to the hierarchical structure of the ensemble. The solutions of strongly correlated groups of models are replaced by a 
single cluster solution. This solution at the next level can be grouped with other closest groups of models. Due to this architecture, the level of 
influence of a single solution of the model is increased. The main advantage of the proposed approach is the determination of the structure of the 
ensemble depending on the correlation of model decisions. Clusterization of decisions for features of similarity enhances the role of diversity and 
allows levelling out the error of an individual decision at a local level and to provide acceptable global indicators of cluster efficiency. Advantage of 
the proposed approach is the possibility of building an ensemble based on the properties of the correlation parameters. 
 
Streszczenie. W artykule zaproponowano podejście oparte na grupowaniu, zgodnie z którym wpływ modelu indywidualnego jest odwrotnie 
proporcjonalny do wielkości grup zagregowanych. Dzięki takiemu podejściu wpływ indywidualnego rozwiązania modelu, różniącego się od innych, 
jest znacząco zwiększony. Agregacja grup jest dokonywana w sposób wprost proporcjonalny do korelacji decyzji. Ponadto agregacja grup modeli 
odbywa się zgodnie z hierarchiczną strukturą zespołu. Rozwiązania silnie skorelowanych grup modeli są zastępowane przez jedno rozwiązanie 
klastrowe. Rozwiązanie to na kolejnym poziomie może być grupowane z innymi najbliższymi grupami modeli. Ze względu na taką architekturę 
zwiększa się poziom wpływu pojedynczego rozwiązania modelu. Główną zaletą proponowanego podejścia jest określenie struktury zespołu w 
zależności od korelacji decyzji modelowych. Klasteryzacja decyzji dla cech podobieństwa zwiększa rolę różnorodności i pozwala na wyrównanie 
błędu pojedynczej decyzji na poziomie lokalnym oraz zapewnienie akceptowalnych globalnych wskaźników efektywności klastra. Zaletą 
proponowanego podejścia jest możliwość budowania zespołu w oparciu o właściwości parametrów korelacji.. (Podejście do tworzenia zespołu w 
hierarchii klastrów z wykorzystaniem korelacji decyzji modelowych). 
 

Keywords: classification, hierarchical clustering, models ensembles, correlation, cluster efficiency. 
Słowa kluczowe: klasyfikacja, grupowanie hierarchiczne, zespoły modeli, korelacja, efektywność klastrów. 
 
 

Introduction and related works 
The basis for the use of group classification methods 

such as ensembles is the diversity of solutions of the 
models. For successful use, models must provide diverse 
and at the same time accurate solutions. Each model 
complements its solution with other models. This underlies 
the application of the ensemble. However, obtaining a 
variety of solutions is difficult, since the models are often 
trained on the same data, and they are based on similar 
mathematical approaches. The consequence of this is 
similar results, which have a strong correlation. Variety is 
also necessary for using the accuracy of solutions since 
combining less accurate models often gives better results. 
Supplementing informativeness with models is effective with 
a low correlation of decisions. Correlation is one of the most 
important indicators of the need to use the model in 
determining group decisions. And it can also serve as a 
criterion for determining the need to use a model in an 
ensemble. Therefore, the influence of each model should 
be determined depending on the correlation of decisions on 
the overall result of the ensemble. Consideration of the 
peculiarities of the model should be displayed in the 
architecture of the ensemble. At the same time, the model 
should improve the outcome of the overall solution. 

Mutual addition of a solution in order to obtain an 
objective assessment in the form of a general solution is a 
fundamental principle on which the methods of group 
determination of solutions are based, as an example of 
ensembles of models [1]. A variety of methods are used to 
combine group models with data manipulation, with 
enhanced features. There are various modifications of 
bugging [2], boosting [3], stacking [4] as the area of the 
most well-known ensembles. 

Despite the fact that the concept of diversity is intuitive, 
attempts to develop a system for measuring diversity are 

quite extensive. An example is [5, 6, 7]. The definition of a 
measure of diversity would allow the development of an 
approach based on that measure. However, the variety of 
factors affecting the effectiveness of the application of 
known solutions is very wide, requires extensive experience 
in use and does not always give the necessary result. 

Another approach is to reduce the number of models that 
make up an ensemble. Pruning can reduce the redundancy 
of models in a group since models can also worsen the 
outcome of ensemble predictions. At the same time, the 
computational complexity of the combination of models still 
remains significantly at the modern level of technology. 
Known as a pruning method based on forward selection [8], 
ensemble pruning is based on objection maximization [9] and 
others. This allows optimizing the calculations to achieve the 
expected result. In our opinion, the clustering-based methods 
[10, 11] are the most interesting. The rationale for this is the 
fact that the correlation of solutions contributes to the 
grouping of objects into certain agglomerations. Moreover, 
the difference in solutions within the agglomeration is 
relatively small. This may indicate that the correlation 
between the solutions of these models is high. And 
accordingly, they can be reduced by the required size. The 
correlation of models is an important factor, as it can be 
assumed that correlation is the inverse of diversity. By 
decreasing correlation, it is possible to increase the variety of 
solutions of ensemble models. 

The selection of ensemble models is also important. The 
difference in models can often be determined based on the 
results of their predictions. The informative features of the 
data on which the model is based also play an important 
role. To expand the diversity of models, approaches using 
human intellectual abilities can be used. This allows 
building machine models based on the mental models of 
humans [12, 13, 14]. 
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Methods of increasing the diversity of models and their 
effective use in ensembles are an important area of 
research. In this paper, we consider the basics of building 
ensembles based on the correlation of models and 
determine the effectiveness of the result based on the 
estimation of the prediction error [15 – 18]. 

 
The individual influence of classifiers on the ensemble 

The solution of the ensemble is a set of individual 
predictions of classifiers. In accordance with this, it is 
necessary to determine how the prediction of an individual 
classifier can affect the general decision. 
1. The classifier may have the wrong solution. However, 

with the vast majority of correct decisions, the effect of 
an incorrect decision may generally be of little 
importance. 

2. An incorrect solution to each of the classifiers introduces 
noise into the overall solution, thereby adversely 
affecting the quality of general solutions as a noise 
source. A noise source can be understood as errors of 
one of the classifiers in a significant percentage bias. 
Also, the noise source can be a set of errors of all 
classifiers that appear relativity to each prediction 
element. 

3. The correct decision of an individual classifier can be 
refuted by a combination of incorrect decisions of a 
group of classifiers. And the presence in many solutions 
of the right one will not affect the general wrong 
decision. 

4. A strong correlation of incorrect decisions of classifiers 
may have a dominant effect on the result of the work of 
the ensemble, despite the presence of correct 
predictions of other classifiers. 

5. In the general case, a strong correlation of solutions for 
all data elements leads to worse results, since there is a 
greater probability that classifiers receive less 
information from the data and have less overall value 
within the training sample in comparison with the total 
data set. For arithmetic means, this is based on the 
dispersion formula for the sums of correlated random 
variables. In this case, the question arises of the 
influence of individual correct predictions of classifiers 
on the general incorrect decision of the ensemble. 
 
Of primary interest is the definition of the influence of an 

individual classifier solution on the overall incorrect 
decision. The obvious influence of the majority on the 
decisions of the group, in this case, is erroneous. The 
interconnection of decisions indicates the incorrectness of 
the general approach for making decisions regarding a 
particular data element. This means that this element has a 
negligible content of general informativeness, on which the 
decisions of the majority were based. At the same time, if 
another decision was made on it by any classifier, there is 
another informativeness that was not determined by the 
majority. This is significant in the event of a majority group 
error. The positive correlation of group decisions has an 
undesirable effect. The presence of a negative correlation 
may indicate the presence of an alternative opinion. This 
aspect indicates the variability of predictions. A prerequisite 
is the presence of a positive relationship between the 
prediction of the ensemble and the expected result. 
 
The hierarchical structure of ensemble as the 
globalization of local solutions 

The presence of a strong positive correlation between 
the individual decisions of the models within the ensemble 
facilitates their aggregation into groups. The decision of 
each group model is strongly correlated with the decisions 

of other members of this group. With a large measure of 
generalization, it is possible to formulate a general decision 
of the group, which to one degree or another will represent 
the solution of each model. Since differences in model 
decisions are insignificant within the group, the generalizing 
ability of aggregation will be significant within the ensemble. 
This allowing to divide the aggregate of models in the 
ensemble into aggregations on the basis of strongly 
positively correlated groups and representing clusters. An 
individual decision of a model within a cluster is of 
insignificant value, and it can be replaced by a generalized 
solution - a cluster decision. A cluster decision represents a 
solution to the models that form its solutions, and each 
individual model delegates its opinion to the cluster. Further 
subsequent aggregation of cluster decisions forms the 
ensemble solution. Such a process of delegating a decision 
to a higher-order level allows creating a hierarchical 
structure for the formation of the ensemble decision. Using 
this approach, the set of highly correlated solutions is 
replaced by a single cluster solution. The influence of an 
individual element on the ensemble solution decreases 
under conditions of strong correlation with other elements, 
and as a result of this, is determined by its location in any 
cluster. The larger the group size, the less influence the 
model has on the ensemble decision. 

The formation of groups allowing to gradually reduce the 
variance in the ensemble. The variance of the group is 
replaced by a bias of a higher hierarchical order. A 
hierarchical structure of the ensemble forms the conditions 
for the separation of decisions by levels of locality, and the 
delegation process gradually globalizes local solutions. An 
important consequence of this process is that global 
solutions may be wrong at the local level, and local 
solutions may differ from the global one. The globalization 
of local solutions through delegation through the 
hierarchical structure of the ensemble improves the bias-
variance trade-off. The cluster decision is formed on the 
basis of an unbiased estimate. In this case, the dispersion 
of the cluster at the highest level of the hierarchy is not 
taken into account, and in fact, the distribution within the 
group is converted into a solution of the cluster, which has a 
certain bias at the next level. This allowed creating 
conditions for heterogeneous accounting for model 
predictions in the ensemble solution. The participation of 
the model in the global solution is made dependent on the 
correlation strength of the solution with relation to other 
models. This translates into a general rule for the structure 
of the hierarchy: the more general information contained in 
the model, the less its participation in global prediction. It is 
also, the correctness of a local solution may be weakly 
correlated with a global solution. 

Consider a simple example in a one-dimensional space, 
which is shown in Fig. 1. This example demonstrates a 
general unbiased hierarchical estimate. Group I consists of 
six strongly positively correlated models. Group II consists 
of one model. However, the participation of this one model 
is high in relation to the general decision of the groups. The 
figure shows the hierarchy of the second level and the 
unbiased estimation of the highest level. Aggregation of 
model predictions and location relative to the expected 
target. 

 

 
Fig.1. Aggregation of model predictions and location relative to the 
expected target 
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In the general case, group II can increase the bias and 
therefore worsen the result. As an example, an asymmetric 
arrangement of groups I and II are relative to the expected 
result (target). This is a consequence of increasing the 
value of a weakly correlated model. An important condition 
for this approach is the presence of a hierarchy of a higher 
level. In our case, this is a level three hierarchy. At the third 
level of the hierarchy (and this is the level of the ensemble), 
the model should have acceptable indicators of unbiased 
estimation. Only in this case, an increase in local bias can 
indicate that the model takes into account some information 
content that other models could not determine. Moreover, 
information content is exclusively local in nature and weakly 
correlates with the general. Using models with a biased 
global estimate introduces uncertainty in which we cannot 
determine whether the prediction of the model at the local 
level is an outlier or the model was able to determine the 
hidden local information content of the data. Thus, under 
the condition of a global unbiased assessment of the model, 
the hierarchical structure of the ensemble makes it possible 
to strengthen the latent information content of the data. And 
in the general case, it tells us that it is necessary to use 
some form of cascading classification as a consequence of 
the appearance of uncertainty and the process of 
strengthening local information content in relation to the 
global one. 
 
Correlation of models and bias of ensemble solutions 

Let us examine how the presence of model correlation 
affects the error of ensemble decisions. The ensemble 
makes decisions using the hierarchical structure of 
delegation. The model is accepted into the ensemble if it is 
overall unbiased. We will use the normal distribution of 
model predictions. For the simplest hierarchy structure with 
symmetrical distribution, the number of groups is two. This 
is also consistent with a minimum number of alternative 
solutions. 

We take the relation between the predictions of two 

cluster groups  1 1 2 1, ,...,L nC C C C  and 

 2 1 2 2, ,...,L nC C C C , 1, 2n n N . Let the prediction 

 1LErr C  and  2LErr C  errors of two clusters (groups) of 

models. We accept the presence of cluster decision errors 
in general. Within each cluster, both variability of predictions 
and the presence of a strong positive correlation are 
possible. The studied variables  1LErr C  and  2LErr C  are 

both distributed normally and have large unbiased 
dispersion 

LC  of cluster predictions. Group predictions are 

opposite. 

(1)      Li LksignP C x signP C x , x X ,  1,2i k   

Groups are correlated with a certain Pearson coefficient 

LC . The combination of the two groups should lead to the 

expected result with a minimum ensemble prediction error 

 min Err E . Based on the opposite of the predictions of 

the groups of models, the ensemble prediction error 
(2)         1Li LkErr E Err C Err C    ,  1,2i k  , 

 0,1   

Accordingly, the variance of the error 

(3)  
    

      

22 2 21

2 1 ,

i k

Li Lk

Var Err E

Cov Err C Err C

   

 

   


,  1,2i k   

Since covariance 

(4)    
LL C i kCov Err C    ,  1,2i k   

Dispersion of ensemble error 

(5)  
  
   22 2 21 2 1

Li k C i k

Var Err E

        



    
,  1,2i k   

The parameter  0,1   is a nondeterministic quantity 

and allows one to study the variance of the ensemble error 
at the extremum 

(6)  
  

0
Var Err E







 

Solution (6) with relation to the Pearson coefficient 
LC  

has the form 

(7)  
 

2 2 2

2 1L

i k k
C

i k

  


  
 




,  1,2i k   

The minimum coefficient value 
LC , based on equation 

(7), can be obtained under the condition 

(8)  2 2 2 0i k k     ,  1, 2i k   

Relating the parameter   

(9)  
2

2 2
k

i k




 



,  1,2i k   

Provided 2 2
i k  ,  1, 2i k   we get the parameter 

value 
(10)  0.5   

We solve (6) with relation to the parameter   

(11)  
 

2 2 2
L

L

k C i k

i k C i k

   


    


 

 
,  1,2i k   

We set the condition 2 2
i k  ,  1, 2i k   

(12)  
 
 

2

2

1

2 1

L

L

C

C

 


 


 


,  1,2i k   

This corresponds to the result (10). Taking into account 
(7) and (11), the main condition for minimizing the 
ensemble prediction error is the equality of the variance of 
the clusters of the ensemble of models and the opposite of 
their predictions. 
(13) 

 
       

2 2 , 1, 2 ;

, , 1, 2 .
i k

Li Lk

i k

signP C x signP C x x X i k

    
    

 

System (13) corresponds to the unbiased variance of 
the ensemble of models at the level of global estimation of 
the data set. The dispersion symmetry ensures 
complementarity of predictions of model clusters when used 
in ensembles with unbiased estimates and of individual 
models in the general case. 

We use equation (7) under the condition of the 
maximum value of the coefficient 1

LC   

(14)  
 

2 2 2

1
2 1
i k k

i k

  
  
 




,  1,2i k   

Relating the parameter   

(15)  k

i k


 

 


,  1,2i k   

Then, 

(16)  
0

lim 1
i

k

i k



 

 
  

 
,  1,2i k   

Provided 0i   value 1  . 
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Based on (16), bias from the median value of the 
parameter   is accompanied by an increase in intergroup 
correlation. In the general case, the bias of the dispersed 
estimate is manifested in the correlation dependence. Thus, 
it can be assumed that the presence of a correlation 
between the clusters is the cause of the bias. 

The dispersion of solutions of a cluster (group) has a 
dependence on the internal dispersion of solutions of the 
models forming this cluster  f  . Solutions within the 

cluster are also correlated. 
Consider a situation in which 0i   value 1  . The 

general correlation of the ensemble is dependent on the 
internal correlation of the groups. If the correlation of one of 
the clusters tends to zero, then it can be assumed that the 
intragroup correlation value of the other group is largely 
represented in the general correlation at 1  . 
 
Experimental results 

To verify the effectiveness of using the hierarchical 
structure, it is necessary to conduct experimental studies. It 
is necessary to form a data set for classification, and sets of 
correlated predictions of solutions. The most optimal from 
the point of view of understanding the effectiveness will be 
synthetic tests that provide the necessary parameters for 
research management. 

Based on the generated normal distribution data using a 
linear relationship, variations of the model predictions are 
generated. This set of solutions is used to obtain correlated 
solutions. 

To generate a correlation of random predictions, we use 
the Cholesky decomposition. If Corr  is a correlation matrix, 
the Cholesky expansion has the form 
(17)  TLL Corr  
Accordingly, random variables can be generated. 
(18)  LX Y  
Here X  is the base distribution, Y  is the correlated 
distribution. 

When generating a correlation of two random variables 

(19)  
2

1 0

1
L

 

 
  

    
here   is the Pearson correlation coefficient. 

Thus, using the set of Pearson correlation coefficient 

 1 2, ,..., n   , 1,...,i n , sets of correlated model 

predictions S  are formed. 
Clustering is a big area of data analysis methods that 

are used to obtain information about the data structure. This 
allows determining the aggregation of data and the 
identification of these groups. The data in each cluster are 
most similar in terms of the measure of similarity of the 
correlation distance, as one of the criteria. Cluster analysis 
will be made based on the decisions made by the models 
regarding the data element. In our case, clustering is one of 
the stages of classifications. Of the various clustering 
methods, we will use the simplest one in order to simplify 
the understanding of the proposed approach. The method 
should use the definitions of grouping data into a 
predetermined number of clusters. In experimental studies, 
we will use two clusters. For this purpose, the k-means 
algorithm is chosen. This is an iterative algorithm that splits 
data into disjoint groups. Predictions  1 2, ,..., nP p p p , 

d
ip R , 1,...,i n , within a group are most similar to the 

breakdown criteria, and clusters k N  are most distant 
from one another. 

Algorithm: K-meains: set , 1,...,i i k  ; 1t   while 

( 1)1, : it i ti k      , : itp P p S    

if 
2

( 1)arg min i t
k

p   , : itx S
it

it

x

i
S

  


. 

K-means strives to create clusters in which the fewer the 
variations, the more uniform the data points in one cluster. 
In terms of usability, the K-means approach defines the 
centers , 1,...,i i k   of cluster sets , 1,...,iS i k . The 

cluster center is a common solution of the formed group. 
The dispersion of prediction of a group of models is levelled 
and embodied in a point solution with a possible bias at the 
next hierarchy level. 

As the base we use a linear model, presented in the 
form 

(20)  Ty x b    
here b  are the model parameters,   is the random error of 
the model. 

Alternative model predictions will be obtained by 
generating correlated sets with relation to the distribution of 
the basic random error. 

Using a visual representation of the averaged cluster 
solutions, one can observe a local amplification of weakly 
correlated model predictions. Moreover, the general 
statistical estimates of the distribution of ensemble 
predictions remain in acceptable values. Compared to the 
random error of the linear model, the hierarchical structure 
of the ensemble gives a significant advantage from the 
point of view of classification. 

We determine the effect of the size of the set of models 
in the ensemble on the change in the results of the 
ensemble. To do this, we fix the distribution of the 
generated data based on the seed parameter, and change 
the set of the correlation parameter. 

 
Table 1. Values of statistical parameters for given sets of 
correlations (Fig. 2). 

Set 1   
 bias variance 

LM -0.1009 1.1591 

LM’s variation -0.3581 2.9016 

Clusters prediction -0.0734 1.2558 
 

Set 2   
 bias variance 

LM -0.2016 1.1859 

LM’s variation -0.2024 3.7683 

Clusters prediction 0.2444 1.5576 
 

Set 3   
 bias variance 

LM -0.23351 1.0853 

LM’s variation 0.33731 3.7138 

Clusters prediction -0.09598 2.1010 
 

Set 4   
 bias variance 

LM -0.03141 1.0223 

LM’s variation 0.20085 1.9691 

Clusters prediction -0.04302 1.4182 

 
Examples of sets of randomly generated normal 

distribution data visually demonstrate clustering using. 
Cluster decisions are generalized by the centers of these 
clusters, the values of which are determined using the K-
means algorithm. 
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Set 1 

 
Set 2 

 
Set 3 

 
Set 4 

Fig.2. Distributions of predictions based on a linear model with error 
modelling and a hierarchical cluster structure of an ensemble of 
models on given sets of correlations 

Cluster decisions are passed to the next level of the 
hierarchy. These experimental studies applied two levels of 
ensemble hierarchy. When making an ensemble decision, 
cluster predictions are averaged. 

 
Set 1 

 
Set 2 

 
Set 3 

Fig.3. Change of the ensemble predictions based on the structure 
of the set of correlation parameter on a fixed data distribution 

 
Variation of the predictions of ensemble models makes 

it possible to reduce the influence of a random prediction 
error on the ensemble result. This confirms the 
effectiveness of the use of group decision-making methods. 
At the same time, a prediction is divided into localization 
levels depending on the architecture of the ensemble 
construction. This indicates the fact that local model errors 
practically do not affect the global characteristics of the 
ensemble. The hierarchical structure allows enhancing the 
influence of the model with relative deviations from the 
agglomeration groups. Thus, the redundancy of the models 
is levelled by reducing their influence. 
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Table 2. Values of the statistical parameters of the predictions with 
a fixed set of generated data and an increase in the dimension of 
the ensemble in accordance with the correlation parameters 
(Fig. 3). 

Set 1   
 bias variance 

LM -0.1009 1.1590 

LM’s variation -0.3581 2.9016 

Clusters prediction -0.1034 1.3168 
 

Set 2   
 bias variance 

LM -0.1009 1.1590 

LM’s variation -0.3581 2.9016 

Clusters prediction -0.0633 1.2283 
 

Set 3   
 bias variance 

LM -0.10094 1.1590 

LM’s variation -0.35816 2.9016 

Clusters prediction -0.06580 1.2643 

 
Conclusion 

Building an ensemble on a hierarchy of clusters, based 
on the correlation of model decisions, has several 
advantages: 
 The hierarchy of clusters creates localization of 

predictions at the localization level with a constant 
global estimation. 

 The proposed ensemble structure allows managing 
decisions based on the level of decision. 

 The introduction of decision levels allows creating a 
control mechanism for the influence of local decisions 
on the global result. This allows to locally change 
decision parameters without affecting global prediction. 

 A controlled mechanism of globalization of local 
predictions is being created. 

 The influence of model predictions is ranked depending 
on the correlation properties of recognized information 
content. 

 Correlation of the solution is the main factor forming 
clusters. 

 The role of model predictions with a strong correlation of 
the solution decreases. 

 The influence of the identified low information content on 
the global ensemble solution is increasing. 
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