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Application of the Least Squares Method to the approximation  
of equally spaced samples in frequency measurement approach 

 
 

Abstract. The paper discusses the application of the method of least squares to the linear approximation of the results of the measurements 
distributed evenly along the axis of abscissae or the axis of ordinates. This makes it possible to significantly simplify the formulae for calculating the 
values of the coefficients of the approximating straight line. The application of the proposed solution to frequency measurements is outlined. 
 
Streszczenie. W artykule rozpatruje się metodę najmniejszych kwadratów do liniowej aproksymacji wyników pomiarów rozmieszczonych 
równomiernie wzdłuż osi odciętych lub rzędnych. W takim przypadku otrzymuje się znaczne uproszczenie wzorów do obliczania wartości 
współczynników prostej aproksymującej. Przedstawiono zastosowanie proponowanego rozwiązania do pomiarów częstotliwości. (Aplikacja metody 
najmniejszych kwadratów do aproksymacji równomiernie rozmieszczonych próbek w zastosowaniu do pomiarów częstotliwości).  
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Introduction 
The least squares method (LSM) is widely used for 

adjusting measurement results burdened with random 
errors [1]. The literature of the subject most frequently 
discusses the linear approximation of LSM as presented on 
Fig. 1. The straight line with equation y=ax+b approximates 
the measurement points (x1, y1), (x2, y2), ..., (xi, yi), ..., (xn, yn) 
in such way as to minimise the sum of squares of 
accurately defined errors [2, 3]. Three types of LSM are 
distinguished: classical, inverse and orthogonal LSM [4, 5]. 

 
 
 
 
 
 
 
 
 
 
 

 
 
Fig.1. Illustration of classical, inverse and orthogonal LSM 
 

In classical LSM, the sum of squares of errors of the 
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values of abscissae xi are precisely known. In inverse LSM, 
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is minimised [4, 5], assuming that the values of ordinates yi 
are precisely known. Orthogonal LSM takes into 
consideration the errors of both abscissae and ordinates, 
and minimises the sum of squares of the distances of 
measurement points from the approximating straight line 
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2 [2, 3]. In practice, classical LSM is applied when the 

errors of abscissae xi are negligibly small as compared to 
the errors of ordinates yi; in particular if it is possible that 
the values of abscissae xi are precisely known and differ by 
the same value, i.e. are equidistant. Likewise, inverse LSM 
is applied when the errors of ordinates yi are negligibly 
small as compared to the errors of abscissae xi; in 
particular if it is possible that the values of ordinates yi are 

precisely known and differ by the same value, i.e. are 
equidistant. If the measurement errors of both coordinates 
are significant and similar in value, the orthogonal 
approximation should be applied [2, 3]. In such case, it is 
not possible to distribute the measurement points evenly.  

The paper discusses the modification of LSM for a linear 
approximation of evenly distributed samples, and presents 
the examples of its application to frequency measurements.  
 
Case of equidistant abscissae 

Fig. 2 shows the case of application of classical LSM to 
linear approximation of measurement points distributed 
evenly along the axis of abscissae x [1, 6, 7, 8].  

 
 
 
 
 
 
 
 
 
 
 

 
 
Fig.2. Least squares method for equidistant abscissae 

 

For classical LSM, the coefficients of the approximating 
straight line y=ax+b are determined with the following 
formula [1]: 
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(2) xayb  .  

The values of abscissae x1, x2, ... xi, ... xn are precisely 
known with negligible error, and are equidistant, with the 
distance between them equivalent to the value of x:  

(3) xixi  .  

By substituting (3) to (1) and taking into consideration the 
formulae for the sum of numerical series:  
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after transformation we obtain the equation for the slope of 
the straight line:  
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where kn, ci are coefficients calculated from the following 
equations: 
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It should be pointed out that kn, ci are integers, clearly 
defined only by the number n of the approximated 
measurement points. The examples of coefficient values kn, 
ci are presented in Table 1. Considering the equation for 
mean values:  
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we obtain the equation for the intercept: 
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It should be pointed out that the obtained equations (5), 
(8) for coefficients a and b of the approximating straight line 
are much simpler than the general equations (1) and (2) 
which makes it possible to apply them to microcontroller 
systems with low computing power.  

 

Table.1. The examples of coefficient values kn, ci  
n kn ci 
4 10 -3 -1 1 3             
7 56 -6 -4 -2 0 2 4 6          
9 120 -8 -6 -4 -2 0 2 4 6 8        

10 165 -9 -7 -5 -3 -1 1 3 5 7 9       
15 560 -14 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14  
16 680 -15 -13 -11 -9 -7 -5 -3 -1 1 3 5 7 9 11 13 15

 
Case of equidistant ordinates 

Fig. 3 shows the case of application of inverse LSM to 
linear approximation of measurement points distributed 
evenly along the axis of ordinates [12, 13, 14].  

For inverse LSM [4, 5], coefficient a of the approximating 
straight line is determined from the following formula: 
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and the intercept is calculated from equation (2). The values 
of ordinates y1, y2, ... yi, ... yn are precisely known with 
negligible error, and are equidistant, with the distance 
between them equivalent to the  from each other by the 
value of y: 

(10) yiyi  .   

Substituting (10) to (9) and taking into consideration the 
formulae for the sums of numerical series (4), after similar 
transformations we obtain the equation for the slope:  

(11) 
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where coefficients kn, ci are calculated from formulae (6). 
Considering the equation for mean values:  
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we obtain the equation for the intercept: 
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Also, in this case the obtained equations (11) and (13) 
for coefficients a and b of the approximating straight line are 
much simpler than the general equations (9) and (2). 
 

 
 
 
 
 
 
 
 
 
 

 
 
Fig.3. Least squares method for equidistant ordinates 

 

 
The fundamental principle of frequency measurements 

For a sinusoidal signal us(t) with the frequency fs and 
amplitude Us, defined by the equation:  

(14) )2sin()( 0 tfUtu sss ,  

phase  of the signal is a linear function of time:  

(15) 02)(  tft s ,  

where 0 is the initial phase. The frequency fs of the signal 
in question is determined by the derivative of phase  of the 
signal in relation to time [15]:  
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This equation is the fundamental principle of the majority 
of frequency measurement methods, whereby the derivative 
is usually replaced with the difference quotient calculated 
for the set time interval t or the set phase increment . 
The first method is carried out with a traditional digital 
frequency meter which counts the signal periods within a 
specified time [16], e.g. one second, and displays the 
measurement results in hertz. The second method is based 
on measuring the time in which the signal phase increments 
by angle 2, i.e. by one full period, the inverse of which 
is the measured signal frequency [9-11, 13, 14, 16]. A 
number of modifications of both basic methods have been 
developed and reported in the literature of the subject. This 
paper considers frequency measurements with the use of 
the linear approximation of the dependence between angle 
 and time t, using LSM. The resulting slope of the 
approximating straight line equals the derivative of the 
signal phase in relation to time and makes it possible to 
calculate frequency according to equation (16).  
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Measurement of the difference of standard frequencies 
The relative difference of frequencies of two standard 

frequency generators is very small, falling within the range 
of 10-6  10-14, which is why it is measured using special 
methods. The generally applied approach is the so-called 
phase method [6, 7, 8]. The principle of measurement is 
provided on Fig.4, while the block diagram of the 
measurement system is presented on Fig.5. The 
measurement is conducted at reference frequency fref=1Hz, 
i.e. the periods of both signals have similar values of 
TgenTref1s. 

 

a) 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
Fig.4. Measurement of the difference of standard frequencies: a) 
time intervals of the signals, b) approximation of the phase time at 
equidistant points in time 
 
 
 
 
 
 
 
 
 
 
 
Fig.5. Block diagram of the system for measuring the difference of 
standard frequencies 
 

The phase ref of signal of the reference generator REF 
(Fig.5) is a linear function of time t:  
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where Tref is the period of the reference signal (Fig. 4a). The 
signal of the analysed generator GEN (Fig.5) is shifted in 
time with respect to the reference generator by the so-
called phase time  [6], i.e. the phase gen of the signal of 
the analysed generator GEN can be written down as:  
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Considering (16), frequency fgen of the signal of the analysed 
generator GEN is: 
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If the phase time has a constant value of =const., then 
both frequencies are equal fgen=fref; whereas if  is changing, 
the relative difference of frequency equals:  
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where a is the slope of the approximating straight line 
illustrated on Fig. 4b. The measurements of subsequent 
values of phase time i are carried out by Time Interval 
Counter TIC (Fig.5) at the points in time ti equidistant from 
each other by the reference signal period, so Tref=1s. 
Therefore, classical LSM for equidistant abscissae (x=Tref) 
can be applied (Fig.2), whereby: 
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Considering equation (5), the relative difference of 
frequency of both generators equals:  
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where coefficients ci and kn are calculated from formulae (6) 
and presented in Table 1. Finally the relative difference of 
frequency is calculated by microcontroller C (Fig. 5).  
The method presented herein can also be applied to 
discipline the local generator VCXO with respect to one 
pulse-per-second (1PPS) signal of the Global Positioning 
System (GPS). The obtained measurement results confirm 
the possibility of synchronizing a local OCXO generator 
using the presented method to a 1 PPS GPS signal with the 
error fgen not worse than 5·10-11 Hz/Hz [7, 8]. 
 
Frequency measurement of noisy signal 

Frequency measurement according to equation (16) can 
also be performed by approximating the signal phase at the 
points where the signal passes through zero level with the 
same sign of derivative [12]. The principle of measurement 
is provided on Fig. 6, while the block diagram of the 
relevant measurement system is presented on Fig. 7.  

 
 
 
 
 
 
 
 
 
 
 

Fig.6. Frequency measurement of a noisy sinusoidal signal 
 

We are considering the measurement of frequency fs of 
signal uN(t) which is the sum of the sinusoidal signal us (14) 
and noise N(t) with normal distribution and zero expected 
value: 

(23) )()2sin(ˆ)()()( 0 tNtfUtNtutu sssN  .  

For the sinusoidal signal us, its phase  is a linear function 
of time, the values of which are equal to the multiple of 
round angle 2 at subsequent points in time t1, t2, ..., ti, ..., tn 

when signal us is passing through zero level (Fig. 6). 
Frequency fs of signal us can be determined from the 
following derivative [12, 15]: 
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where a is the slope of the approximating straight line 
illustrated on Fig. 6.  

 
 
 
 
 
 
 
 
 
 

Fig.7. Block diagram of the system for measuring the frequency of 
a noisy signal 

 

The measurements of subsequent points in time ti when 
the signal passes through zero level are carried out by 
Timer/Counter T/C (Fig. 7); the current state K of T/C is 
read “on-the-fly” by Capture Register CR and stored in 
RAM. Input Circuit IC detects subsequent points in time ti 
when the signal passes through zero level, which 
correspond to identical increments of the signal phase 
precisely by the angle equal to 2. However, the points in 
time ti are not precisely measured due to the presence of 
noise N(t) in the measured signal uN(t). Therefore, inverse 
LSM for equidistant ordinates (y=2) can be applied 
(Fig.3), whereby: 

(25) iytx iii  2, .  

Considering equation (11), the signal frequency fs is equals: 
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where coefficients ci and kn are calculated from formulae (6) 
and presented in Table 1. Finally the signal frequency fs is 
calculated by microcontroller C (Fig.7). The method 
presented herein makes it possible to effectively measure 
the frequency of a power grid in the presence of noise.  
The trigger error introduced by Input Circuit IC is an 
important error component of digital measurements of slow-
edge signal frequencies in the presence of noise. This error 
can be effectively reduced by estimating the frequency 
using the method proposed (26), calculating the slope of the 
linear regression using the LSM [12]. The same method can 
be used for the frequency pulse signal, for which we can 
determine only increases of the phase equal to a full period 
=2 [13]. 

 
Summary 

The paper presents the application of LSM to the linear 
approximation of the results of the measurements 
distributed evenly along the axis of abscissae or the axis of 
ordinates. The relevant mathematical equations and 
examples of application of the method to frequency 
measurement were discussed. The advantage  
of the proposed solution is the significant simplification  
of the necessary mathematical calculations, thus making it 
possible to use it in microcontroller systems with low 
computing power. 
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