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Temperature-time profiles of a tubular bus in shorting 
conditions 

 
 

Abstract. In the paper temperature-time profiles generated in a tubular bus under short-circuit conditions were determined. The initial-boundary 
parabolic problem was the mathematical model. Adiabatic boundaries of the system and field uniformity at the initial moment of shorting were 
assumed and motivated. The two models of the bus-bar electric resistivity were considered: the temperature dependent (variable) and averaged one 
(constant). The problem was solved by means of Green’s function. The one-second shorting current and its multi-second equivalents were 
determined based on the above. The analytical results were verified numerically by the finite element method. 
 
Streszczenie. W artykule wyznaczono czasowe przebiegi temperatury generowane w szynoprzewodzie rurowym podczas zwarcia. Matematycznym 
modelem jest początkowo-brzegowe zagadnienie paraboliczne. Przyjęto i uzasadniono założenie o adiabatycznych brzegach układu oraz o 
równomierności pola w początkowej chwili zwarcia. Rozpatrywano dwa modele elektrycznej rezystywności szynoprzewodu: uzależnionej termicznie 
(zmiennej) i uśrednionej (stałej). Zagadnienie rozwiązano za pomocą funkcji Greena. Na tej podstawie wyznaczono jednosekundowy prąd zwarcia i 
jego wielosekundowe równoważniki. Wyniki analityczne zweryfikowano numerycznie metodą elementu skończonego. (Przebiegi temperatury 
szynoprzewodu rurowego w warunkach zwarciowych). 
 
Keywords: tubular bus, shorting, temperature-time profile, Green’s function, one-second shorting current 
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Introduction 
 The heated tubular bus in rated conditions was analysed 
in paper [1]. The mentioned conditions cause that the 
heating curves are similar to the diagrams of increasing 
exponential functions. Besides, thermal field values did not 
exceed a maximum operating temperature. At the present 
article the thermal field is investigated under short-circuit 
conditions. Obtained temperature-time profiles are totally 
different from those determined in [1]. Namely, they are 
similar to diagrams of the linear functions, they grow much 
faster and to bigger values than those in [1]. Besides, the 
time of shorting is incomparably shorter from the time of the 
system heating-up in nominal rating conditions. Then, the 
aim of the presented paper is an investigation of the thermal 
field picture in the case of substitution of the rating 
conditions [1] by the shorting ones. The additional aim is 
determination of the one-second shorting current (and its 
multi-second equivalents). That parameter has  important 
significance because of the risk of the thermal desctruction 
of the power connections and contacts. 
    The analysed bus-bar is presented in Fig. 1, [15, Fig.1]. 
The system is a seamless, hollow cylinder of internal radius 
R1 and external R2. The length of a tube is much larger than 
its exterior diameter 2R2 (60:1). It follows from the above 
the axiallysymmetrical configuration of a bus-bar. The 
thermal field is generated by the flow of a shorting current of 
the rms value IIshI and of the power frequency f=60Hz.  
 Temperature influence on the thermal conductivity λsh 
and on the specific heat csh of metals ( Cu or Al) is relatively 
small [2], [3]. For this reason the parameters λsh and csh may 
be averaged within the assumed range of temperature 
variations (from  70oC to 110oC). However the above remark 
does not consider the resistivity ρ(Tsh) of a bus-bar. With a 
sufficient accuracy ρ(Tsh) may be approximated by the 
following function  

(1)     11 *1)( TTTT shsh     for  CT o
sh 200 , 

where )]20(1)[20()( 11 CTCT oo    denotes the 

resistivity at temperature T1 [4], Tsh  is the temperature 

during a shorting and )]20(1[* 1 CT o  . In case of 

cupper m 1071.1)20( 8  Co  and Co1 103.39 4 .  

The last parameter means the temperature resitivity 
coefficient. 

 

 

 

 

 

 

 

 

 
Fig. 1.  Cross-section of a tubular bus 

Boundary-initial problem of the thermal field generated 
by shorting current  
 The volume power density of a source is g=P/V, where  
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means the active power, RAC, RDC are electric resistances of 
the bar for the AC and DC current respectively, ks denotes a 
coefficient of the skin-effect [4], l represents a length of the 
system and lRRV )( 2

1
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2    is the volume of a hollow 

cyllinder. Considering the above in the balance of an energy 
together with (1) and assumptions from the previous 
chapter the following parabolic equation was obtained [3] 
with respect to a temperature increase  vsh(r,t)=Tsh(r,t)-Ta , 
T1=Ta 
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a heat source at temperature Ta. 
The additional component should be noticed in equation (2) 
(i.e. the last term on the left side). It results from 
consideration of relation (1) and it is not appeared in a 
classic equation of the heat conduction [5], [6]. This way a 
solution of the problem is more complicated. 
  Due to thermal inertia the system will not manage to 
give up heat during a short circuit [7], [8]. In the 
mathematical sense, this is expressed by the relation 
between short circuit duration sht  (max. 5s) and thermal 

time constant )(rH  (3027.4s, [1,section 3.3]). Therefore, 

inequality )(rt Hsh   is satisfied. Consequently, the 

boundary conditions on r=R1 and r=R2 surfaces can be 

assumed adiabatically for shtt   
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                                  for  21 RrR  , shtt  . 

 It was assumed that a short circuit takes place in the 
steady state generated by rated current. The material of the 
tubular bus is characterised by great thermal and electric 
conductivity (Cu or Al) and the majority of the thermal 
resistance resides in the convective layer outside of the 
conductor. Therefore, in the initial moment of a short circuit 
one can assume a uniform temperature distribution in the 
system's cross-section 

(4)      ash TTtrv  max  0,   for   21 RrR  , 

where maxT  means sustained maximum temperature (or 

maximum operating temperature). 
 New function wsh(r,t) [9] was introduced to eliminate the 
fourth term of the left hand side (2)  
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After substituting (5) to equation (2) the following was 
obtained 
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                                           for   21 RrR  , 0t . 

On the other hand, after considering (5) the form of 
boundary condition (3) and initial condition (4) does not 
change. In order to obtain them it is enough to make 
change ),(),( trwtrv shsh   in relations (3), (4). 

Green’s function of the heating model in short-circuit 
conditions 
 The boundary-initial problem for Green’s function  
Gsh=Gsh(r,t,ξ,η) [9], [10], [11] was defined as down below  
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(9) 0shG   for   t  , 

where the product of shifted Dirac’s impulses is on the right 
side of (7).  
After taking into considerations boundary conditions (8), the 
initial one (9) and analogical ones for function wsh(r,t) 

(obtained after exchange ),(),( trwtrv shsh   in (3), (4)) it 

is obtained [9], [11] 
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In comparison with [1, (14)], the additional summand occurs 
in (10) which is connected with non-zero initial condition (4). 
  In order to determine Green's function, the 
homogeneous auxiliary problem was introduced [9] towards 
function  trsh ,  
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(13)   )(0, rFrsh    for   21 RrR  , 

where F(r) is any distribution of the initial condition.   
The auxiliary problem (11)-(13) was solved with two 
methods: separation of variables [5], [12] and Green's 
function [9], [10]. In the solution obtained by the separation 
of variables method there is a additional eigenvalue [6]. 
This results from the boundary condition of the second kind 
(12). Then a constant element exist in the front of series in 
the solution (as a counterpart of the additional eigenvalue). 
After comparing the solutions and replacing  t t-η  there 
was Green’s function of the heating model in short-circuit 
conditions obtained 
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while n  is determined by means of the following equation 

of eigenvalues 

(16)   01  n   for  0n . 

Shorting temperature-time profiles and short duration 
fault currents 
 Green’s function (14) was substituted into (10) and 
integrated. In order to achieve that, one used equation of 
eigenvalues (16) and definition (15). As the result, both 
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series reduced to zero except for the constant component 
(corresponding with additionally eigenvalue). Subsequently, 
the obtained result was substituted into (5) and the increase 
definition given before formula (2) was applied. Eventually, 
the heating curves in short-circuit condition were obtained 

(17)      1max  tm
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Temperature-time history (17) and other parameters of the 
system were calculated in Mathematica 10.4 software [13]. 
The following data were assumed  

(18)   
R1=0.04445m,      R2=0.0508m,         λsh(90oC)=379.3 W/(mK),  
csh(90oC)=402.3 J/(kgK), μsh=8940 kg/m3, ks=1.02, Ta=40oC, 
ρ(40oC)=1.8444·10-8 Ωm, ε*=36.4361·10-4 1/oC,, Tmax=70oC,  

 The  essentials parameters are: one-second shorting 
current and its multi-second equivalents. These are 
determined from the following condition: in the moment of 
shorting interruption ( shtt  ) the temperature of the bus 

does not exceed limiting value TSH. The discussed example 
assumed TSH=110oC. Such values assures thermal safety of 
power connections and contacts [16]. As temperature is an 
increasing function of short-circuit current, one should only 
solve the following equation towards shI  

(19)   shshshshSH IIttTT  , . 

 Respective shorting currents were calculated on the 
basis of (17), (19). The iterative method and While loops in 
Mathematica software [13] were used. Shorting current 
Ish1=152 921A  was obtained for the one-second short circuit, 
Ish3=88 289A for the three-second short circuit and 
Ish5=68 388A for the five-second one. Fig. 2 shows 
temperature changes illustrated with a heavy line for the 
aforementioned currents at different shorting duration. In 
power installations, the determined ampacity should be 
reduced due to the electrodynamic forces and thermal 
strength of other components of the current carrying path  
(such as transformers, conductors, line traps and switches). 
With regard to a lack of radial coordinate in (17), 
temperature changes are the same throughout the whole 
cross-section of the system. 
 For comparison purposes, the same characteristics and 
parameters were determined again but at constant 
(averaged) resistivity in the scope of temperature changes 
from  70oC to 110oC  (that is, ρ(Tav=90oC)=2.1804·10-8 Ωm).  In 
this case, a equivalent temperature coefficient of resistivity 
should be set to zero ( 0*0   ). Then, the following 
results from relations given below formula (2) 
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After considering (20) with proper indexing and calculating 
the limit of function (17) the following was obtained 
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where T(t) means linear dependence of the temperature of 
the tubular bus during a short circuit at averaged resistivity 
ρ(Tav= 90oC). Graph of function (21) is presented in Fig. 2. 
by means of dashed lines (at the same currents as for 
variable (temperature dependent) resistivity ρ(Tsh)). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2.  Time profiles of temperature in the tubular bus at variable 
ρ(Tsh) and averaged ρ(Tav=90oC) resistivity for the one-second 
shorting and current load Ish1=152 921A, for the three-second short 
circuit at Ish3=88 289A and the five-second one at  Ish5=68 388A   

Numerical verification of the solution  
 The presented method was verified. For the verification 
purposes, the obtained results were compared with 
numerical calculations done with Mathematica 10.4 
software [13]. Namely, with the use of the finite element 
method [14], problem (2)-(4) converted into temperature 
was solved again. Subsequently, the relative differences of 
temperature increases were calculated according to the 
following formula  
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where Tsh(t) represents temperature-time profile obtained 
with Green’s metod, TFE(t) is temperature-time history 
calculated with finite element method, Ta denotes reference 
temperature (ambient temperature in this case). Fig. 3 
shows relation (22) at variable (temperature depended) 
resistivity of the tubular bus for different short circuit 
duration.  

Final remarks 
 Short but intense heating with fault current make time 
profiles of temperature throughout the whole cross-section 
of the tubular bus almost linear (Fig. 2). Averaging resistivity 
ρ(Tav) results in an inconsiderable increase in temperature 
compared to case ρ(Tsh)  in the short-circuit analysis (in Fig. 
2, dashed lines are placed higher than heavy ones). It can 
be noticed, that for the shorter duration of a shorting the 
speed raising of the curves ρ(Tav)  and ρ(Tsh) is considerably 
growing when current becomes larger (Fig. 2 for  
tsh=1s,3s,5s).  
 
 
 
 
 
 
 
 
 

 

 

 

Fig. 3.  Relative differences of temperature increases determined 
by the finite element and Green’s methods for different short circuit 
duration at variable (temperature depeded) resistivity ρ(Tsh)  
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Relative differences (22) (of temperature increases 
calculated by means of the finite element and Green’s 
methods) are very small (Fig. 3). Some more discrepancy 
seen for the one-second shorting (Fig. 3, tsh=1s) results from 
a very large speed of temperature rising in that case. 
Despite of that Fig. 3 ilustrates an excellent conformity of 
the analytic and numerical solution. 
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