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Abstract. The paper discusses the features of the formation of a system of differential equations describing the linear periodically time-varying circuit 
applying the nodal voltage analysis and their transfer to the frequency domain using L.A. Zadeh’s equation. The features of formation of the transfer 
functions of the linear periodically time-varying circuit by the frequency symbolic method are considered. The results of solving the systems of linear 
algebraic equations formed during the analysis of such circuits by the frequency symbolic method are presented. The described approach is 
implemented in the system UDF MAOPCs (user-defined functions for multivariate analysis and optimization of parametric circuits), which is used for 
modelling circuits, particularly of parametric amplifiers in special purpose receivers. 
 
 Streszczenie. W artykule opisano opis matematyczny obwodu  zmieniającego się w czasie z węzłem napięciowym oraz przejście z dziedziny czasu 
do dziedziny częstotliwości z wykorzystaniem ®ównań Zadeha. Analizowano trzymany system liniowych równań w dziedzinie częstotliwości. 
Prezentowana metoda. Zastosowanie przejścia do domeny częstotliwości w analizie liniowych obwodów zmieniających się okresowo  
 
Keywords: linear periodically time-varying circuits, frequency symbolic models, frequency symbolic method. 
Słowa kluczowe: obwód zmieniający parametry okresowo, domena częsytotliwości, równania Zadeh’a. 
 
 
Introduction 

 The frequency symbolic method (FS method) [1] is the 
method of formation of a time-varying transfer function  

( , ) ( , ) ( )W s t y s t x s [1,2,3] of the linear periodically time-

variable (LPTV) circuit in the steady-state mode in the 
frequency domain, where t is the time, s is the complex 

variable, ( ), ( , )x s y s t are the Laplacian images of the input 

( )x t  and output ( )y t  signals. The basis for such a 

formation is the linear differential equation 

(1) 
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1 0
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where ( )ia t , ( )jb t  are the known real-valued periodic 

functions  defined by the parameters and structure of a 
certain circuit, ,m n are positive integers, m n . According 

to the FS method, the transfer function ( , )W s t  is 

determined from L.A. Zadeh’s equation [1,2] written based 
on (1) 

(2) 
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,  

as a result of its approximation by a trigonometric or 
complex Fourier polynomial, 

1
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The number of harmonic components taken into account in 
the Fourier polynomial defines the accuracy of the transfer 
function approximation. 

The transfer function ( , )W s t  determines the output 

signal ( )y t . So if ( )  stx s e and  s j , then  

(3) ( ) Re[ ( , ) ]  sty t W s t e .    

In [4], the FS method is extended to the case when the 
circuit is not described by one equation (1) relative to the 
external variables ( )x t  and ( )y t , but by a system of linear 

differential equations (SLDE) describing such a circuit in 
relation to all its external and internal variables. This 
eliminates the need for the formation of the equation (1), 

which is usually formed from such SLDE, by excluding the 
internal variables from it. This approach leads to the 
formation and necessity of solving the L.A. Zadeh’s 
equation in a matrix form and transfers the elimination of 
the SLDE internal variables from the time domain to the 
frequency domain. It is known that the elimination of 
variables in the frequency domain is simpler, as it is 
performed in the system of linear algebraic equations 
(SLAE), not differential ones. As practice shows [5], the 
elimination of variables in SLAE is much simpler in terms of 
algorithmization and significantly reduces the computation 
time required for this. 

The important feature of the FS method is that some or 
even all the parameters of the circuit elements can be 
presented by symbols. Therefore, the transfer functions can 
be formed in a partially or completely symbolic form. Such 
symbolic transfer functions enable solving multivariate 
tasks, in particular statistical analysis or optimization of 
devices simulated by LPTV circuits. 

However, the well-known drawback of symbolic 
methods is a sharp increase in the time of the transfer 
functions formation, as the simulated circuit becomes more 
complex. One of the most effective ways of combating this 
phenomenon is the application of the so-called sub-circuit 
method to solving the systems of linear algebraic equations 
(SLAE) formed as a result of using the FS method [5]. We 
believe that in the case under consideration, the most 
effective sub-circuit method is the so-called d-tree method 
[5]. The d-tree method is applicable only in case when the 
circuit is described by a system of equations written by the 
nodal voltage analysis [5]. This method, however, forms 
integro-differential equations, not differential ones [6,7]. 
Generally, this is due to the presence of constant or time-
varying inductances in the circuit. Therefore, the task under 
consideration in this paper consists in eliminating the 
integrals from the integro-differential equations and 
reducing the equations to purely differential ones in the form 
of SLDE.  
 
Elimination of integrals by differentiating the equations 

The most common way of eliminating integrals from 
integro-differential equations is to differentiate them. 
However, the application of this method, especially in the 
presence of various parametric inductances 

1 2( ), ( ),...L t L t in the circuit, may not lead to the elimination 
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of integrals. For example, the differentiation of the fragment 

of the equation with the nodal voltages ( ), ( )i ju t u t  

(4) 
1 2

1 1
( ) ( )

( ) ( )
      i ju t dt u t dt

L t L t
 

does not eliminate the integrals in it. This situation can be 
avoided, for example, by adding low-ohmic resistors in the 
circuit model in series with the inductances. The resistors 
will move the terms in (4) to different equations, but will 
increase the number of equations in the system. If the 
structure of the circuit is such as to allow eliminating the 
integrals by differentiation, the corresponding equations 

should be pre-multiplied by the corresponding ( )nL t , which 

makes it possible to get rid of the product of the functions 
and then only perform the differentiation. However, such 
actions often increase the unwieldiness of the equations, 
and, as a result, unnecessarily extend the required 
computation time and reduce the complexity of circuits 
being analysed. Thus, the differentiation of equations is not 
always a desirable way of eliminating the integrals from the 
equations and should be avoided if possible. 

Another way of eliminating integrals from equations is to 
replace the variables. The method of replacing the variables 
is presented below. 

Elimination of integrals by replacing the variables  
1. If the equations of the circuit model compiled by the 

nodal voltage method contain, for example, expressions 
with integrals of these nodal voltages 

(5)  
1

( )
( )  i

n

u t dt
L t

,  

then we replace the expression ( ) iu t dt  for a new 

variable ( )iV t :  

(6)   ( ) ( ) i iV t u t dt .  

If there are also ( ), ( ), ( ),... 
i i iu t u t u t  in the system of 

equations, then, according to (6), they are replaced 

with ( ), ( ), ( ),... i i iV t V t V t , respectively. 

The denominators in the expressions of the type (5), 
which significantly reduce the accuracy and speed of further 
computations, can be eliminated in two ways: by multiplying 

the equations by ( )nL t  or, the problem statement 

permitting, by making a replacement ( ) 1 ( ) n nt L t . In 

the second case, the expression (5) takes the form 

(7)  ( ) ( ) n it V t .  

Thus, the given system of integro-differential equations 
of the circuit transforms into a system of purely differential 
equations, in which some or all the variables are new and, 
in addition, there are no denominators. 

2. The obtained SLDE is solved using the FS method, 
which results in the formation of the corresponding transfer 
functions ( , )W s t . 

3. If the obtained transfer function contains a new 

variable ( , )iV s t : 

(8)  ( , ) ( , ) ( ) iW s t V s t x s ,  

then, for example, for ( )  stx s e according to (3) 

(9)  ( ) Re[ ( , ) ]  st
iV t W s t e .  

Taking into account (6), 

(10)  ( ) Re[ ( , ) ]  st
iu t dt W s t e ,  

and, accordingly, ( )iu t  will appear as: 

 (11)   ( ) (Re[ ( , ) ])  st
iu t W s t e .  

This approach, in our opinion, offers a number of advan-
tages as compared to the differentiation of equations, as it 

-  does not require compulsory multiplication of the 

equations of the circuit by the expressions ( )nL t , except 

for cases when this reduces the bulkiness of the equations; 
- does not cause an increased bulkiness of the 

equations of the circuit due to their differentiation; 
- does not require the addition of low-ohmic 

resistors into the model of parametric inductance, due to 
which the number of equations in SLDE does not increase. 

The differentiation according to (11) is performed only 
once for each formed transfer function, and only of its real-
value part, and therefore presents no difficulties. 

 

Application of the differentiation methods and 
replacement of the variables 

Figure 1 shows the simplest LPTV circuit with a time-
varying inductance, which nevertheless demonstrates the 
idea of the ways of eliminating the integrals from the 
equations by differentiation and replacement of the 
variables.  

 

 
Fig1. Elementary LPTV circuit, 
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The differential equation of such a circuit compiled by 

the nodal voltage method appears as: 

(12)   
1

( ) ( ) ( )
( )

   y u t u t dt i t
L t

  

The method of differentiation of equations includes the 
following steps. 

1. The equation (12) is multiplied by ( )L t and then 

differentiated, which results in: 
(13) ( ) ( ) [ ( ) 1] ( ) ( ) ( ) ( ) ( )            y L t u t y L t u t L t i t L t i t .   

2. From (13), L.A. Zadeh’s equation is obtained: 

 (14)
( ) ( , ) [ ( ) ( ) 1] ( , )

( ) ( )

    
 

yL t W s t yL t s yL t W s t

L t s L t
,   

where ( , ) ( , ) ( )W s t u s t i s , ( , )u s t  and ( )i s  are the 

Laplacian images of the time variables ( )u t  and ( )i t , 

respectively. 
3. The solution of (14) by the FS-method for 

 (15)   0( ) (1 cos( ))   L t L m t   

and approximation of the transfer function by the Fourier 
polynomial for one ( 1k ) harmonic component 

0 1 1( , ) ( ) ( ) cos( ) ( ) sin( )      c sW s t W s W s t W s t    (16) 

makes it necessary to perform symbolic solution of the 
symbolic SLAE 
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(17) 
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4. Based on the solutions of the system (17), we 

determine ( )u t  for ( )  sti s e  in the form (3) 

( ) Re[ ( , ) ]  stu t W s t e  for the time points 

0. 00  0. 0  0. 0  0. 0  0. 0     t 4 e 6, 4 1e 6, 4 2e 6, 4 3e 6, 4 4e 6 (s), which 

gives values ( )u t , shown in А rows in Table 1, for the 

approximation of the transfer function ( , )W s t  with one 

( 1k ), two ( 2k ), three ( 3k ) and four ( 4k ) 
harmonic components, respectively.  

Table 1. The values of the voltage ( )u t  for the circuit in Fig.1  

t, sec  0.400e-6 0.401e-6 0.402e-6 0.403e-6 0.404e-6
А 

k=1 
15.978 -112.972 -146.543 -143.357 -125.763

B 15.978 -112.972 -146.543 -143.357 -125.763
А 

k=2 
16.349 -113.279 -146.310 -143.610 -125.425

B 16.349 -113.279 -146.310 -143.610 -125.425
А 

k=3 
16.343 -113.280 -146.303 -143.611 -125.431

B 16.343 -113.280 -146.303 -143.611 -125.431
А 

k=4 
16.343 -113.280 -146.303 -143.611 -125.431

B 16.343 -113.280 -146.303 -143.611 -125.431
Micro-cap 16.343 - 113.279 -146.303 -143.611 -125.460

 

The actions required for the replacement of the variables 
requires the steps listed below. 

1. By replacing ( ) ( ) V t u t dt  in the equation (12) 

and multiplying it by ( )L t , we obtain 

(18)  ( ) ( ) ( ) ( ) ( )    L t y V t V t L t i t .            

The parameter ( ) t , which is the inverse of ( )L t , is not 

introduced here due to the need to compare the 
values ( )u t  obtained by the two methods of eliminating the 

integrals from the equations. 
2. From (18) we obtain L.A. Zadeh’s equation of the 

circuit for the complex domain s  

(19) ( ) ( , ) [ ( ) 1] ( , ) ( )       L t y W s t L t y s W s t L t ,    

where ( , ) ( , ) ( )W s t V s t i s , ( , )V s t  and ( )i s  are the 

Laplacian images of the time variables ( )V t  and ( )i t , 

respectively. 
3. Solving (19) by the FS-method, considering (15) 

and (16), makes it necessary to perform a symbolic solution 
of the next symbolic SLAE:                 

(20) 
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       

  

 
  
   



 
   
       
      

  

4. Solving (20) and determining ( )u t  for ( )  sti s e  in 

the form ( ) (Re[ ( , ) ])  stu t W s t e  for the same time 

points according to (8)-(11) results in the values ( )u t  

presented in B rows of Table 1 for the approximation of the 
transfer function ( , )W s t  also with one ( 1k ), two 

( 2k ), three ( 3k ) and four ( 4k ) harmonic 
components, respectively. 

 A separate line (the bottom one) in Table1 presents the 
values of the voltage ( )u t obtained using the Micro-Cap 

simulator.  
Table 1 shows that: 
1. The voltage values obtained both by the 

replacement of variables and by differentiation of equations 
for 3k and 4k  are equal, indicating that for the 

approximation of the transfer function ( , )W s t  of the circuit 

in Fig. 1 for the calculation of ( )u t , three harmonic 

components will suffice. 
2. The voltage values obtained both by the 

replacement of variables and by differentiation of equations 
for the same k  and y in Table 1 are identical. Comparing all 
the significant digits of the numbers obtained in MATLAB, 
we determine the similarity in the computations using both 
approaches in 12 significant digits. This is a very 
satisfactory result. 

3. The strong similarity of the voltage values obtained 
by the FS-method for 3k  and those generated by Micro-
Cap [7] confirms the adequacy of the FS-method. 

Given the similarity of the results of comparing both 
methods of eliminating integrals from systems of integro-
differential equations, the further computer experiments will 
evaluate the speed they provide. 
 

Computer experiments* 
As said above, the method of replacing the variables, in 

contrast to the method of differentiation, allows an 
additional reduction of the bulkiness of the differential 
equations by eliminating the denominators in them by 

multiplying these equations by the corresponding ( )nL t  or 

by replacing ( )nL t with ( ) 1 ( ) n nt L t . So, if the problem 

being solved allows presenting the time-varying inductance 
in the form of a few harmonic components ( ) t or even one 

harmonic component 

(21)  0( ) (1 cos( ))     t m t ,  

then the differential equations describing the circuit can 
become even less bulky. So, for the above example from 
Fig. 1, the equation (18) in case of replacing ( )L t with 

( ) 1 ( ) t L t  will appear as 

(22)  ( ) ( ) ( ) ( )    y V t t V t i t ,  

which results in L.A. Zadeh’s equation 

(23)  ( , ) ( ) ( , ) 1     Y W s t Y s W s t   

and its solution in the form of SLAE 

(24)

 0 0

0 0 1

10

0/

0

0

2 0 1

0

     
          

    
     

       


     

c

s

Y s m

m Y W

W

s

W

Y

Y Y s

, 

which is less cumbersome than the equation (20), and,  
therefore, should be faster to solve. 

It should be noted that the replacement of ( )L t  with 

( ) t in the method of differentiation is absolutely not 

advisable, since it does not eliminate the need to 
differentiate the products of the two time-dependent 
functions, one of which is an integral. 

In general, the choice of the simplification method 
depends on a specific problem to be solved, which will be 
demonstrated in the computer experiments below. 
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Fig 2. A test LPTV circuit consisting of r ( )L t c - elements 

The objective of the experiment. Let the circuit with the 
identically time-varying inductances (15) consist of in-series   

( )L t c - elements, as shown in Fig. 2. Let the number of the 

elements in the circuit be r . The task is to determine the 

output voltage of the circuit 1( )ru t  and the dependence of 

the time of its formation on the number of elements in the 
circuit r by the FS-method applying both ways of eliminating 
the integrals from the equations, assuming that all the 
parameters of the circuit elements are designated by 
symbols in accordance with Fig. 2  

The implementation of the experiment. The experiment 
was implemented for the two values of r : 1r  and 2r , 
which is demonstrated below.  
      For 1r , the system of integro-differential equations of 
the circuit is 

(25) 
1 2

1 2 2

1 1
( ) ( ) ( ),

( ) ( )

1 1
( ) ( ) ( ) 0,

( ) ( )

 

    

 

 

u t dt u t dt i t
L t L t

u t dt u t dt c u t
L t L t

  

where 2 ( )u t is the output voltage of the circuit. 

Eliminating the denominators, (25) is multiplied by ( )L t , 

resulting in 

(26) 
1 2

1 2 2

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) 0.

  

     

 
 

u t dt u t dt L t i t

u t dt u t dt L t c u t
  

Table 2. The value of the  voltage 2u and the time of its estimation 

 
The method of differentiation.The equations (26) are 

differentiated and SLDE is written in a matrix form: 

(27) 
1

2
2

1 1 ( )
,

1 1 0

     
           

u Lp L i

ucL p cLp
 

where the symbol p  denotes the operation of 

differentiation d dt . 

From (27), L.A. Zadeh’s equation is written as: 

(28)  

1 1

2 2

1

2
2

0 0 0 0

0 0 2

1 1
,

1 1 0

       
                 

     
            

W W

W WcL cL cLs

W Ls L

WcL s cLs

  

where s is the Laplace transform complex variable, 

1 1( , ) ( )W u s t i s and 2 2 ( , ) ( )W u s t i s . The value of the 

output voltage 2u  for the time points 

8.000 : 0.001:8.004t s   and its estimation time 

according to (3) are presented in А rows of Table 2. 
The method of replacing the variables. From (26), taking 

into account (6), 

(29)  
1 2

1 2 2

( ) ( ),

( ) 0.

  
     

V V L t i t

V V L t c V
  

which in a matrix form appears as 

(30)  1

2
2

1 1
.

1 1 0

     
          

V Li

VcLp
  

L.A. Zadeh’s equation written from (30) will appear as 

(31) 

1 1

2 2

1

2
2

0 0 0 0

0 0 2

1 1
,

1 1 0

       
                
     

           

W W

W WcL cLs

W L

WcLs

     

where 1 1( , ) ( )W V s t i s ,  2 2 ( , ) ( )W V s t i s . The value of 

the output voltage 2u  for the time points 

8.000 : 0.001:8.004t s   and its estimation time 

according to (11) are presented in B rows of Table 2. 
For 2r  by analogy with (26) the system of integro-

differential equations of the circuit with the output voltage 

3 ( )u t is 

(32)

1 2

1 2 2 3

2 3 3

( ) ( ) ( ) ( ),

( ) 2 ( ) ( ) ( ) ( ) 0,

( ) ( ) ( ) ( ) 0,

  

      

    

 
  
 

u t dt u t dt L t i t

u t dt u t dt L t c u t u t dt

u t dt u t dt L t c u t

 

The method of differentiation by analogy with (27) - (28) 
according to (32) results in L.A. Zadeh’s equation 

(33)

1 1

2 2

3 3

1
2

2
2

3

0 0 0 0 0 0

0 0 0 2 0

0 0 0 0 2

1 1 0

1 2 1 0 .

0 1 1 0

        
                    
                

      
                
            

W W

cL W cL cLs W

cL W cL cLs W

W Ls L

cL s cLs W

cL s cLs W

   

The value of the output voltage 3u  for the time points 

8.000 : 0.001:8.004t s   and its estimation time 

according to (3) are presented in А rows of Table 3. 
The method of replacing the variables by analogy with 

(29)-(31) results in L.A. Zadeh’s equation 

1 1

2 2

3 3

0 0 0 0 0 0

0 0 0 2 0

0 0 0 0 2

W W

cL W cLs W

cL W cLs W

        
                  
               

 

(34)  
1

2
2

2
3

1 1 0

1 2 1 0 .

0 1 1 0

W L

cLs W

cLs W

     
               
           

  

The value of the output voltage 3u  for the time points 

8.000 : 0.001:8.004t s   and its estimation time 

according to (11) are presented in B rows of Table 3.  

t, µs  
8.00 8.001 8.002 8.003 8.004 

Estimation 
time W, s 

А  
k=1 

-0.0114 -0.0026 0.0073 0.0142 0.0157 44.1 

B -0.0114 -0.0026 0.0073 0.0142 0.0157 18.6 

А  
k=2 

-0.0114 -0.0026 0.0073 0.0142 0.0157 74.0 

B -0.0114 -0.0026 0.0073 0.0142 0.0157 30.4 

А  
k=3 

-0.0114 -0.0026 0.0073 0.0142 0.0157 135.8 

B -0.0114 -0.0026 0.0073 0.0142 0.0157 43.9 

А  
k=4 

-0.0114 -0.0026 0.0073 0.0142 0.0157 561.2 

B -0.0114 -0.0026 0.0073 0.0142 0.0157 65.5 
Micro- 
Cap 

-0.0114 -0.0026 0.0073 0.0142 0.0157  
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Table 3. The value of the voltage 3u  and the time of its estimation 

t , 
μs  

8.000 8.001 8.002 8.003 8.004 
Estimation 
time W, s 

А 
k=1 

-0.0117 -0.004 0.00592 0.01378 0.01564 135.3 

B -0.0118 -0.004 0.0059 0.01377 0.01564 71.9 

А 
k=2 

-0.0118 -0.004 0.0059 0.01378 0.01562 410.7 

B -0.0118 -0.004 0.0059 0.01378 0.01562 120.4 

А 
k=3 

-0.0118 -0.004 0.0059 0.01378 0.01562 2033.5 

B -0.0118 -0.004 0.0059 0.01378 0.01562 180.7 

А 
k=4 

over the allotted time 

B -0.0118 -0.004 0.0059 0.01378 0.01562 290.9 
Micro 
-Cap 

-0.0118 -0.004 0.00594 0.01379 0.01462  

 

Table 4. The value of the voltage 4u  and the time of its estimation 

t , 
μs 

 8.000 8.001 8.002 8.003 8.004 
Estimation 
time W,s 

А 
k=1 

-0.0305 -0.0993 -0.1338 -0.1114 -0.0464 350.3  

B -0.0217 -0.0746 -0.1039 -0.0839 -0.0329 208.9  

А 
k=2 

-0.0367 -0.0678 -0.0756 -0.0508 -0.0069 1151.1 

B -0.0497 -0.0674 -0.061 -0.0279 0.01482 331.8  

А 
k=3 

over the allotted time 

B -0.0497 -0.0673 -0.0605 -0.0276 0.01512 496.6 

А 
k=4 

over the allotted time 

B -0.0497 -0.0673 -0.0605 -0.0276 0.01512 731.7 

Micro- 
Cap 

-0.05 -0.0678 -0.0603 -0.0276 0.01533  

 

Table 5. The value of the voltage 5u  and the time of its estimation  

t , 
μs  

8.000 8.001 8.002 8.003 8.004 
Estimation 
time W,s 

А 
k=1 

0.0111 0.0037 -0.0057-0.0135 -0.0148 1081.9  

B 0.0119 0.0036 -0.0066-0.0144 -0.0161 692.3  

А 
k=2 

0.0115 0.0036 -0.0063-0.0138 -0.0158 3155.1  

B 0.0119 0.0036 -0.0067-0.0146 -0.0162 944.1  

А 
k=3 

over the allotted time 

B over the allotted time 

Micro-Cap 0.0119 0.0036 -0.0068-0.0146 -0.0162  

 

The obtained output values of the voltages 4u and  5u  

for the selected time points and their estimation time by the 
method of differentiation for 3r  and 4r  are presented 
in А rows of Table 4 and Table 5, and those obtained by the 
method of replacing the variables in B rows of Table 4 and 
Table 5, respectively. 

Table 2 – Table 5 data suggest the following. 
1. The sameness of the output voltage values 

estimated by the FS-method for different numbers of k  
harmonic components in the transfer function suggests the 
sufficiency of the selected k values. For instance, in Table 

2 the sufficient value is 1k , in Table 3 2k , in Table 

4 4k , respectively. As follows from Table 5, using the 
method of replacing the variables, the value of the input 

voltage 5u  cannot be evaluated for k>2. 

2. The values of the voltage obtained both by the 
replacement of the variables and by the differentiation of 

equations for the same k values in Table 2 – Table 5 are 
very similar.  

3. The strong similarity of the voltage values obtained 
by the FS-method and those generated by Micro-Cap [8] 
confirms the adequacy of the FS-method. 
 
Conclusions 

1. The results of the performed computer experiment 
assure that the method of replacing the variables provides 
the same accuracy as the method of differentiation, but is 
faster.  

2. Therefore, we conclude that the method of replacing 
the variables is more feasible for the system UDF MAOPCs 
[9], which is intended for the simulation of LPTV circuits and 
a number of electronic devices simulated using such 
circuits, than the method of differentiating the equations. 

3.  In our opinion, the power law dependence of the 
time of the transfer functions formation on the complexity of 
the circuit requires the application of the sub-circuit method 
[5] and the introduction of this method into the UDF 
MAOPCs system, which can significantly reduce the 
computation time required for the formation of transfer 
functions and considerably extends the class of permissible 
analysable LPTV circuits in terms of complexity. 

* Here and thereafter each value of the time was 
obtained by averaging the values of the time resulting from 
ten consecutive computations. The computer experiments 
were performed  in MATLAB R2014a on Dell PC with 
Intel(R) Core(TM) i-5-3317U CPU, 1.70 Ghz, 
RAM:8.00Gb.MATLAB R2014a. 
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