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Structure Optimization of Functionally Sustainable 
Electromechanical Systems 

 
 

Abstract. Structural schemes of functional-stable systems is proposed for a closed discrete system of electromechanical system automatic control. 
Quadratic quality criterion and structural scheme of the optimal restoring device are proposed. A theorem on quadratic criterion minimization is 
proposed and proved to recover control. The structural schemes of functionally stable direct and indirect action systems is presented. The optimal by 
generalized quadratic error criterion restorative management are proposed for functionally stable direct action systems 
 
Streszczenie. W artykule przedstawiono schematy strukturalne systemów funkcjonalno-stabilnych dla zamkniętego dyskretnego automatycznego 
układu sterowania systemem elektromechanicznym. Zaproponowano kwadratowe kryterium jakości i schematy strukturalne optymalnego urządzenia 
przywracającego. W analizowanym układzie sterowania poprzez minimalizację kwadratowego wskaźnika jakości przywrócono stabilność układu 
działania bezpośredniego. Optymalizacja struktury zamkniętego dyskretnego automatycznego układu sterowania systemem 
elektromechanicznym 
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Introduction 
The theory of functional stability set back at the end of 

the 20th century and combines the concepts of reliability, 
survivability and safety, and provides for the restoration of 
complex systems [1-6]. Today the theory emerging to 
provide reliable operation of onboard information and 
measurement complexes of aircraft [1-3] is used in many 
scopes of activity to ensure the reliable functioning of 
complex technical systems [4-6]. The paper [5] shows 
theoretical possibility of creating functionally stable 
electromechanical systems (EMS). To design a functionally 
stable EMC, it is necessary to provide [1-6]: 
 abnormal situation (AS) detection; 
 its identification; 
 restrict or localize the effect of AS to the system; 
 develop control function in case of AS emergence and 

redistribute resources. 
Let’s consider the first stage - the detection of Abnormal 

Situation. Today, there are many approaches to the 
identification of parameters of electromechanical systems 
and their elements [7-12]. All of them are reduced either to 
comparing the parameters of the existing EMC with the 
previously calculated parameters [8-10], or predicting the 
state of the EMC on the basis of mathematical modelling of 
its processes in real-time [13-19]. There was insufficient 
attention to the issue of substantiating the signs of AS and 
further state identification. 

An important component of functionally stable systems 
are algorithms of identification, working under the influence 
of random processes. The random function distribution X(t), 
tT with values in some measurable space in the space of 
all functions of time t, representing tT, is unambiguously 
determined by the sequence of its coordinated finite-
dimensional distributions (Kolmogorov's theorem). 
Consequently, the problem of complete system statistical 
analysis is to determine all finite-dimensional distributions of 
the state vector, regarded as a random function of time. In 
most cases, it is sufficient to know only the one-dimensional 
distribution of the state vector, regarded as a random 
function of time. Then the problem of analysis is reduced to 
the definition of only one-dimensional distribution of the 
state vector. However, for a number of important practical 
tasks, the knowledge of finite-dimensional distributions is 
necessary. In particular, the problem of probability 

calculation of a random process output in the system from a 
bounded region requires knowledge of the distributions of 
the state vector of a sufficiently high dimension. It is 
necessary to know the two-dimensional distribution when 
dealing with the problem of conditionally optimal 
extrapolation of processes in stochastic systems [1-3]. 

The problems of evaluation in the systems can be 
divided into two classes. The first class includes the 
problems associated with result evaluation after finishing all 
experiments or observations. The second class involves the 
problems associated with processing the results of 
measurements in real time, that is, directly in the 
experiment or observation processes. The particularity of 
the first class evaluation problems is the use of all 
measurements results, while the second class problems 
may include only the observation results received up to this 
point in time. It must be emphasized that it is pointless to 
apply second-class problem solving techniques for a 
posterior evaluation, since this will only lead to a reduction 
in the accuracy of the evaluation. Real-time evaluations 
require tight limitations to admissible valuation. 

The evaluation problem in arbitrary stochastic systems 
with unlimited delay has not yet been fully resolved. Such 
systems are sometimes referred to stochastic differential 
equations. Then all evaluation problems are reduced to the 
corresponding problems for stochastic systems [2, 3]. 
Therefore, it is necessary to optimize the structure of 
functionally stable electromechanical systems. 
 

Mathematical model 
The works [1-13, 18, 19] use a variety of (linear, 

nonlinear, probabilistic, etc.) continuous or discrete dynamic 
models that contain state and monitoring equations of the 
dynamic system. 

For a mathematical description of thyristor control 
systems (TCSs), modern asynchronous motor drives often 
use the following vector-matrix equation and the 
corresponding system of equations in a matrix form [13]: 

(1)  vpi G C Api    
   

, 

where Ti ( i , i , ..., i )  


; T( , , ..., )     


 is a current 

vector of external branches and vector potentials of TCS 
external nodes, that is, the branches out of it and nodes as 
points of possible connection of TCS to the scheme of the 
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investigated system of asynchronous electric drive; G, C


 is 
the matrix and the vector the elements of which are 

determined by the parameters of TCS; i


 is a vector of 
currents of a three-phase bipolar thyristor key; A is a matrix 
determined by the internal scheme connecting the phase 
branches of bipolar thyristor switches and throttles. 
 

Let’s we make a description of a dynamic object 
(Fig. 1 a) on the basis of Equation (1) in the form of linear 
difference equations: 

(2) k
uQ( q )y( n ) q P ( q )U( n ) P ( q ) ( n )   , 

where y(n) – initial value; U(n) – control influence; ξ(n) – 
external influence (disturbance); Q(q), Pu(q), Pξ(q) – 
polynomials of q; an, bn, cn – coefficients of polynomials; q – 
delay operator: qmχ(n) = χ(n–m) (sometimes the delay 
operator q–1 is used in the literature, so q–mχ(n) = χ(n–m)). 
 

It is assumed that polynomials Pu and Pξ are stable, 
that is, they have all zeros outside the single circle |q| < 1, 
which corresponds to the minimal phase portrait. 

Disturbance is a sequence of independent and equally 
distributed random variables such that: 

(3) M{ ( n )}   , 
, m n

M{ ( n ) ( n m )}
, m n

 
 

   


. 

 

In the general case, the equation of the restoring 
component (Fig. 1 b) can be represented as 

(4)  r yR( q )U( n ) P ( q )r( n ) P ( q )y( n )  , 
where r(n) – input influence. 
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Fig.1. Block diagrams of dynamic object (a) and control device (b) 
 

Excluding the object (2) and the control device (4) U(n) 
from the equations, we obtain the equation of a closed 
system: 

(5) k
u rG( q )y( n ) q P ( q )P ( q )r( n ) P ( q )R( q ) ( n )   , 

where 

(6)  k
u yG( q ) Q( q )R( q ) q P ( q )P ( q )  , 

is a characteristic polynomial of a closed system. 
 

Structural schemes of a closed system are shown in 
Fig. 2. The choice of polynomial restoring device R(q), Pr(q), 
Py(q) provides for the properties necessary in the closed 
system. It is obvious that this choice depends on the 
polynomial of the object Q(q), Pu(q) and Pξ(q). To provide 
functional stability, a dynamic object must be controlled so 
that when the stationary input randomly effects r(n), the 
object output y(n) is the closest to the output y0(n) of the 
given system – the reference model. 

(7)  kG ( q ) y ( n ) q H ( q )r( n )  
  , 

where G0(q), H0(q) are given stable polynomials of N3 and N4 
degree, respectively. 
 

We take adopt a generalized quadratic criterion [1, 2, 
4, 5] as a degree of proximity: 

(8)  G ( q )
I M e( n )

D ( q )



 

      
    

, 

where 

(9)  e( n ) y( n ) y ( n )  , 
is an error; G0(q) and D0(q) stable polynomials of N4 and N5 
degree, respectively. 

The structural scheme of an optimal restoring device is 
shown in Fig. 3. The solution of the synthesis problem is to 
determine the parameters of block control unit, in which the 
criterion (8) reaches minimum. Therefore, fulfillment of the 
conditions of the theorem allows us to assert that an optimal 
control device exists. 
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Fig.2. Block diagrams of closed system 
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Fig.3. Block diagram of optimal restoring device 
 

Results and Discussion 
In accordance with criterion (8), we can formulate a 

theorem on optimal control of an object, which is described 
by equations (2). 

Theorem. For a minimum-phase object (2), optimal 
control minimizing the criterion (8) is determined by 
equation (4), in which: 

(10) 

0 0
u

0 0
r

0
y

R( q ) G ( q )D ( q )P ( q )S( q );

P ( q ) H ( q )C ( q )P ( q );

P ( q ) G ( q )P( q ).









 

 

The polynomials herewith: 

(11) 

* * k
k

N* * *
N

k

S( q ) S q S q ;

P( q ) g g q g q ;

N max N N ,N N ,






 

    

   

   

    



  

satisfy the polynomial equation 

(12) kC ( q )P ( q ) D ( q )Q( q )S( q ) q P( q )
    . 
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For optimal restorative management 

(13) kC ( q )P ( q ) D ( q )Q( q )S( q ) q P( q )
    , 

and the minimum value of the criterion (8) is equal 

(14) 
k

q
min opt m

m

C ( q )
I M e ( n ) ( S )

D ( q )



 




        
    

 . 

The proof of this theorem is obtained directly from the 
calculation of C0(q)Pξ(q)e(n) due to the error expression (9), 
the polynomial equation (12), and the object equation (2). 

Really 
k

uC ( q )P ( q )e( n ) q D ( q )P ( q )S( q )U( n ) P( q )y( n )

C ( q )P ( q )y ( n k ) D ( q )P ( q )S( q ) ( n ).



  

  

 


   

   
 

Equating zero to the square brackets, we obtain: 

(15) 

k
uC ( q )P ( q )e( n ) q D ( q )P ( q )S( q )U( n )

P( q )y( n ) C ( q )P ( q )y ( n k )

D ( q )P ( q )S( q ) ( n ).





 

  






  

    



 

 

Replacing in accordance with (7) y0(n+k+1) to 

H ( q )
r( n )

G ( q )




 we obtain the equation of the optimal 

restoring device (4), (10). The equality remaining in this 
case coincides with (13), and hence it takes place (14). 

It is convenient to present the equation of the control 
device, so as to separate the unknown polynomials from the 
known, predefined polynomials G0(q), H0(q), C0(q), D0(q). 
Then, taking into account (10), we get the equation (4) 

(16)
k

k

N* * *
u N

R ( q )U( n ) R ( q )r ( n ) P( q )y( n ),

R ( q ) P ( q )S( q ) b h ( q ) h ( q ) ,








  

 

    
 

where 

(17) H ( q )C ( q )
r r( n )

G ( q )D ( q )

 

 
 , y( n ) y( n )

D ( q )


 . 

 

The input influence r(n) and the output quantity y(n) 
are received through the corresponding known filters with 
transmitting functions 

(18)  H ( q )C ( q )

G ( q )D ( q )

 

 
, 

D ( q )
 . 

 

The optimal control device equation (16) can be 
represented in a recurrent form 

(19)  

*T

*

r ( n ) Z( n )
U( n )

b





   , 

where * * * * * * * * * T
N N N( b ,h , ,h ,q ,q , ,q ,C , ,C )
           , 

Z(n) – vector of observations. 
 

Let’s consider the structural scheme of an optimal 
restorative filter (Fig. 4). 

The dimensions of the vectors α* and Z(n) increase with 
increase of k delay, consequently, the complexity of the 
restoring device increases. 

Thus, for complete equation priori information (15), (19) 
determine optimal control according to the generalized 
quadratic error criterion (8). Having incomplete priori 
information, that is, when the parameters of the control 
object (2) are unknown, the analogous (19) of the equation 
determines only the structure of optimal control, then 
equation (19) is replaced by 

(20)  

Tr ( n ) Z( n )
U( n )

b





   , 

where α – a satisfactory vector of parameters of the 
restoring device. 
 

 
Fig.4. Block diagram of optimal restoring filter 
 

Therefore, equation (20) determines only the structure 
of the optimal restoring filter. 

The above structure of the control device is the basis 
of the construction of functionally stable systems. In these 
systems, the vector of parameters α = α(n) of the restoring 
device should vary in such a way as to ensure the optimality 
of the whole system over time. This is achieved when 
α(n) → α* at n → ∞. 

Functionally-stable systems can be divided into two 
types - indirect and direct. In indirect functionally stable 
systems, the change of control parameters α(n) occurs 
based on the results of the object identification [1-3, 5]. 

According to the vector estimates of Ɵ(n) of the object 
parameters (2), obtained on the basis of the processing of 
observations, the estimates of the parameters of the 
restoring device α(n) are calculated. 

(21) * * * * * * * * T
N N N( a , ,a ,b ,b , ,b ,C , ,C )

        . 
 

The block diagram of an indirect functional-stable 
system is depicted in Fig. 5. The adaption circuit in it 
contains the identification device generating the estimates 
of Ɵ(n), and the calculator, which, according to Ɵ(n) 
evaluates the estimates of α(n) and changes the parameters 
of the restoring device. 
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Fig.5. Block diagrams of indirect functional stable system 
 

The change in the parameters of the recovery device in 
direct, functionally-stable systems occurs directly on the ba-
sis of observations. They are not required when identifying 
the object. The structural scheme of a direct functional-
stable system is depicted in Fig. 6. The adaption circuit 
includes only the adjustment device, which, by observation, 
changes the parameters of the recovery device [1-4]. 

 
 
Fig.6. Block diagrams of direct functional stable system 
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Indirect functionally stable systems include systems with 
explicit identification, and to direct ones - systems with 
implicit identification and systems with a reference model 
[1-3]. 
 
Conclusions 

Based on the process analysis in the systems of 
automatic control, it is suggested to use a structural scheme 
of optimal restoring device. 

A quadratic quality criterion is proposed as a refinement 
to equation (14) for a minimal phase object, described by a 
system of differential equations, 

Based on the equation of the restoring device, it has 
been put forward and demonstrated the requirements for 
restorative management. 

Based on the analysis of the structural scheme of the 
optimal restoring device (Fig. 4), the structural schemes of 
functionally stable indirect action systems (Fig. 5) and direct 
action (Fig. 6) are proposed. 

A theorem for optimal restoring control of a discrete 
system with a quadratic quality criterion is formulated and 
proved. 
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