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Generalized Frobenius matrices and angles between them
in analysis of linear electrical circuits

Abstract. Generalized Frobenius matrices and their inverses are applied in analysis of the linear electrical circuits. The basic properties of
generalized Frobenius matrices are analyzed. It is shown that if the state matrix of electrical circuit has generalized Frobenius form then its inverse
system matrix has also generalized Frobenius form. The notion of an angle between state matrices of linear electrical circuits is proposed and its

basic properties are investigated.

Streszczenie. Zaproponowane w tej pracy uogdlnione macierze Frobeniusa oraz ich odwrotno$ci zostaly zastosowane w analizie liniowych
obwodow elektrycznych. Zostaty zbadane podstawowe wifasnos$ci tych macierzy. Wykazano miedzy innymi, ze macierze odwrotne uogdlnionych
macierzy Frobeniusa majg réwniez posta¢ uogdlnionych macierzy Frobeniusa .Wprowadzono pojecie kgta miedzy macierzami stanu liniowych
obwodow elektrycznych oraz zbadano ich podstawowe wfasno$ci. (Uogdlnione macierze Frobeniusa i katy miedzy nimi w analizie liniowych

obwodow elektrycznych).
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Introduction

The linear electrical circuits have been analyzed in many
papers and books [4-6, 8-14]. The constructability and
observability of standard and positive electrical circuits have
been addressed in [5], the decoupling zeros in [6] and
minimal-phase positive electrical circuits in [8]. A new class
of normal positive linear electrical circuits has been
introduced in [9]. Positive fractional linear electrical circuits
have been investigated in [12] and positive unstable
electrical circuits in [13]. Infinite eigenvalue assignment by
output-feedback for singular systems has been analyzed in
[7]. Zeroing of state variables in descriptor electrical circuits
has been addressed in [15]. Controller synthesis for positive
linear systems with bounded controls has been investigated
in [1]. Stability of continuous-time and discrete-time linear
systems with inverse state matrices has been analyzed in
[16].

In this paper the generalized Frobenius matrices and the
angles between state matrices of linear electrical circuits
will be investigated.

The paper is organized as follows. In section 2 the basic
properties of generalized Frobenius matrices are analyzed.
The linear electrical circuits with state matrices in general
Frobenius forms are investigated in section 3 and the
inverse matrices of electrical circuits with generalized
Frobenius forms in section 4. The angles between state
matrices of linear electrical circuits are analyzed in section
5. Concluding remarks are given in section 6.

The following notation will be used: ‘R - the set of real
numbers, R™™ - the set of nxm real matrices, RT™ -
the set of Nnxm real matrices with nonnegative entries and
RN =®M!, M, - the set of nxn Metzler matrices (real
matrices with nonnegative off-diagonal entries), 1, - the

nxn identity matrix.

Generalized Frobenius matrices
Definition 1. [14] The following matrices

(1)

0 b o - 0
0 0 5 - 0
4, =| - : s :
0 0 by
L% ~—& —dy " —dpq

0 0 - —day

b 0 - 0 —a

Ady=dAT =|0 by 0 -a
0 0 bn—l _am—l_

—dpy —dp2 T T4 —‘1'0_

b 0 0 0

=] 0 b, 0 0
0 0 “ by 0]

~ U1 bl 0 0

-a,, 0 b, - 0
Adg=4T =] Do
- 0 0 - B,

-—a, 0 0 — 0

B >0, k=1...,n-1
are called the matrices in generalized Frobenius form.
It is easy to verify that

det[1,s—Aj1=s"+a, ;s""!

(2) for j=1,..,4

+.+ by by s+ aghy..by
and the coefficients of the polynomial are positive if and
only if a¢ >0 and b >0 for k =1,...,.n—1.
Theorem 1. The inverse matrix of the generalized
Frobenius matrix is also the generalized Frobenius matrix.
Proof. The proof will be given only for the matrix A,. The
proof for the remaining matrices (1) is similar.
It is easy to verify that

) by 0 ... o T
0 0 b - 0
A= r s
0 0 0 bn—l
@) "8 —& —& —an-
[ 11 —1p—1 —1—1 1
- by —gha —8 byjan —ag
byt 0 0 0
= 0 by! 0 0
0 0 byl 0
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Theorem 2.

1) If Sji,

eigenvalues of the generalized Frobenius matrix Aj

j=1..,4, i=1..,n are the nonzero

then s}il are the eigenvalues of the inverse matrix

Al =14

2) The inverse matrix of the generalized Frobenius matrix
is asymptotically stable if and only if the generalized
Frobenius matrix is also asymptotically stable.

Proof. Let sjj, j=1..,4, i=1,..n be the zeros of the

characteristic equation of the matrix AJ-

(4) det[lpsj—Aj]=0 for j=1..4.
Then multiplying (4) by det[—s}lAJTI] we obtain
det[l,sj — Ajldet[-s]'A}"]
(5) =det[(1nsj - Ap(-s] AT
= det[l,s]" - A]'1=0
Therefore, if sjj, j=1..4, i=1,..,n are the eigenvalues
of the matrix Aj then SJ-_i1 are the eigenvalues of the matrix

Aj_1 , J=1,...,4. The proof of 2) follows from the fact that
Re s=Re(ey + jf) = <0, k=1,..,n if and only if

ReSQI:Re 1_ =Re zak 2—j zﬂk 5
ax + 1P« ag + B¢ ai B
=%~ <0, k=l..n.
ai + B

Theorem 3. The characteristic polynomial of the inverse
matrices in the generalized Frobenius forms (1) is given by

det[1ps - Aj'1=s" +ag b 'ays"!

+..+agb by la,_s+ag'b byl
for j=L...,4 where |, isthe nxn identity matrix.

Proof. Using (3) and developing the determinant with
respect to the first row we obtain

det[l,s—A ]
s+agibia agby'ay - agbhan ag!
_bl—l s 0 0
(M =de : P : :
0 o - s 0
0 0 —brl s

=s"+ag'blas" .+ ag by byt s+ag b byl
Similar results we obtain for j=23,4. o

Example 1. The characteristic polynomial of the
generalized Frobenius matrix

0 1 0
® A=l0 0 2
-2 -4 -5
has the form
s -1 0
9) det[l;5—A]=[0 s —2|=s>+55>+85+4

2 4 s+5

and its zeros are S; =—1, S, =$3=-2.
The inverse matrix of (8) has the form

-2 -125 -05

(10) Al=| 1 0 0

0 0.5 0

and its characteristic polynomial
s+2 125 0.5
) det[l;s—A=|-1 s 0
0 -05 s

=53 +25%+1.255+0.25
with zeros Sl_l =-1, 82_1 = 53_1 =-05.

Electrical circuits with state matrices
Frobenius form

Consider the electrical circuit shown in Fig. 1 with known
resistance R, inductance L, capacitance C and source
voltage e.

in general

R L

e C )u

Fig. 1. Electrical circuit.

As the state variable we choose the voltage u on the
capacitor with given capacitance C and the current i in the
coil with given inductance L. Using the Kirchhoff's laws we
obtain the equations

(12a) e= Ri+Lﬂ+u ,
dt

. d
(120) i=c
dt
which can be written in the form
(13a) du] A X +B;e
a) — = ,
dt i_ ! i 1
where
0o L 0
o) A= | Gl Bu=|y
L L L L
or
(13c) d[i] A i+B e
c) — = ,
dt|u| flu)
where
_R 1 1
(13d) Ap=| b LlBp=|L]
c 0

Note that the matrices A;; and A, have the generalized
Frobenius form and

R 1

det[1,5— A ]1=det[l,5— A, ]=5% +—s+—

[125—A] [125—Ap] TS
Therefore, the electrical circuit is asymptotically stable for
all valuesR>0,L>0and C>0.
Now let us consider the electrical circuits shown in Figure 2
with known resistance R, inductance L, capacitance C and
source voltage e.

(14)

14 PRZEGLAD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 9/2019



<) I

Fig 2. Electrical circuits

Fig. 2a we obtain the equations
. du

(15a) e= R[I +Caj+u ,

di
15b) u=L—,
(15b) pm

Using the Kirchhoff's laws for the electrical circuit shown in
which can be written in the form

16 du—AuB
(a)ai_21i+2le’

where
L 1
(16b) Ay =| RC  C| B, = RC
r 0 0
or
dli i
(16¢) i = Ay u +Bye,
where
R 0
(16d) Ap=| Ll » Bon=l
'C RC RC

Note that the matrices A,; and A,, have the generalized
Frobenius form and

1 1
1,5— Ay ]=det[1,S—Ar]=52 +—s+—
det[Ip5— Ay]=det[lys—Ap]=s YT
Therefore, the electrical circuit shown in Fig. 2a is
asymptotically stable for all values R>0,L>0and C> 0. In
a similar way we may shown that the state equation of the
electrical circuit shown in Fig. 2b has the form

d|u u
(188) E|:|:|:A3l|:|:|+ B3le,

(17)

where
11 1
T~ -~ RC
(180) Ay =| RC Cl By =
—— 0 l
L L
or
(18¢c) ! A ! + Bs,e
c) — = ,
dtju 2 u 32
where
1
0o -1 T
L
(18d) A32: 1 1 ’B32= )
C RC %

The state equation of the electrical circuit shown in Fig. 2c
has the form

19 du_ uBe
(a)ai—A41i+41,

where

11 0
(19b) Ay = RIC » Byr=| 1
_E 0 L
or
(19¢) d|i Ay ! + By,e
c) —| |= ,
dtfu 2lu 42
where
0 -+ 1
(19d) Ap=| |1-  Bp=|L|.
C RC 0

Note that the matrices A;, Ay, Ay and Ay, have the
generalized Frobenius form. It is easy to see that
det[1,5— Agy] = det[1,5 — Asp | = det[1,5 — Ay ]
1 1

=det[l,s— =S +—Ss+—

[1s—Agp] TS
Therefore, the electrical circuits shown in Fig. 2 are
asymptotically stable for all values R >0, L>0and C > 0.
Conisder the electrical circuits shown in Fig. 3 with known
resistance R, inductance L, capacitance C and two source
voltages e; and e,.

(20)

Fig. 3. Electrical circuits

Using the Kirchhoff’'s laws we obtain the equations

di
21 eg=L—+u,
(21a) ¢ m

du . 1
21b) C—=i+(gj—Uu—ey)— ,
(21b) pm (e 2) R
which can be written in the form

RSN

where

(220) A= RE C

Note that the matrix As; has the generalized Frobenius form
as the matrix A,,.
Therefore, we have the following collorary.

Collorary 1. The state matrix A of the electrical circuit is
independent of its source voltage.

Combining the electrical circuit shown in Fig. 2a and 2b we
obtain the electrical circuit presented in Fig. 4 with given
resistances R, R,, inductances L,, L,, capacitances C,, C,
and source voltage e.

Taking into account (16a), (16b) and (18a), (18b) we obtain
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U U
i A 0 |i B
(23) dih|_| A gl Baly
) )
where A,,, B, are given by (16b) and A;;, B;; are given by

(18b).

Continuing this procedure we may obtain in general case an
electrical circuit with nxn state matrix in generalized
Frobenius form.

Fig. 4. Electrical circuit.

Inverse matrices of electrical circuits with generalized
Frobenius forms

Consider the electrical circuit shown in Fig. 2a with
given parameters R, L, C and e. The inverse matrix of the
state matrix A,; (given by (15b)) has the generalized
Frobenius form

1 1
-—— —= 0 L
(24) Af=| RC C| - L
1 -C ——
— 0
L
and its characteristic equation is given by

s -L
(25)  detlls—Ax{]=|o s+£=sz+%s+LC:O.
R

The inverse matrix of the electrical circuit shown in Fig. 2b
with given parameters R, L, C and e has the generalized
Frobenius form

-— = 0 -L
) A= RC Cl =l L
-— 0 R
L
and its characteristic polynomial is given by
| S L L
@27)  det[l,s-Asil=|_ L{=s’+=s+LC.

C s+—
R

Similarly, the inverse matrix of the electrical circuit shown in
Fig. 2c with given parameters R, L, C and e has the
generalized Frobenius form

-1

1 1
-—— = 0 -L
@) Ai= RE Cp =g L
- R
L
and its characteristic polynomial is given by
S L

(20) detfls—Af{1=| S+£=32+%S+LC.
R

Note that the characteristic polynomials (25), (27) and (29)
have the same form and the inverse matrices A;l‘, A;ll
and A(ﬁl are asymptotically stable for all R > 0, L > 0 and
C > 0. Therefore, the asymptotic stability of the electrical

circuits is independent how are connected the elements R,
L and C.

The characteristic equation of the matrix A21 has the form

11
ITC C :32+LS+L:0

RC LC

S+

(30)  det[l,5—Asl]=

L
and after multiplication by LC we obtain

(31) LC52+%5+1:0.

Note that the characteristic polynomal (29) has the same
coefficients but in reverse order. This confirms Theorem 2.
These considerations can be easily extended to generalized
Frobenius forms matrices for n> 2.

Angles between state matrices of linear electrical
circuits

In this section the angle between two matrices will be
defined and used in linear electrical circuits.

To any given matrix A=[aj]e R™™ the following two
corresponding vectors can be defined
N T
(32a) A=[a11...a1m dr1...dym a31...anm] Efan
and
(32b) A=[a,...a, ap...8, &53...8y,] cR™
T denotes the transpose.
Using the vectors of the matrices AeR™™ and
B:[bij]e‘ﬁnxm we may defined the following scalar

product of the two matrices.
Definition 1. The scalar

— A A n m
(33) (A,B)=(AB)= _Zl _Zl aijbij
i=l j=

is called the scalar product of the matrices A and B.
In particular case if A = B then
—_ A A —2 A2 nm 5
@) AA=Al=[A=|d =T Xai>0
i=1 j=1
for any nonzero matrix Ae R™™ .
Using (33) and (34) we may defined the angle ¢ between
two given matrices A and B of the same dimensions.
Definition 2. The angle defined by
A,B A,B
(35a) p=ppp = arccosg = arccosLA) , O<p<rm
[AlE] Ae
is called the angle ¢ between the matrices A and B.
The relation (35a) can be equivalently written in the form
(AB) _(AB)
(38b) cos@p=cosSPAR =T== =TI a -
Al |48

From (35b) it follows cos@p g =cosgg p and
COoS wa,fB =CO0S ¢B,A .

In particular case if B = A then from (35b) we have
cosp=1and ¢p=0.
Example 2. Find the cos¢ between the following matrices

1 -2 0 2
(36) aA=j0 1| B=|1 0|

2 3 -1 1
In this case
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(37a) A=[-1-20123]",B=[0210-11]
and
B37b) A=[102-213]",B=[01-1201]
Using (33), (34), (35b) and (37) we obtain

. A A —2 ~l2 2 ~l2
(38a) (A,B)=(AB)=-3, [A :‘A‘ =19,[B| :‘B‘ _7
and
(AB) _(AB)_ 3
NE ‘A”B‘ V1947

Consider the following two matrices of the same dimensions

(38b) cosp=cos@pg =

(39) A:[aij]eﬂ%"xm, B:[bij]ei}?”xm.
Definition 3. The matrix defined by
a by aymbim
(40) AoB= e R™M
anlbnl anmbnm

is called the Hadamard product of the matrices (39).
Theorem 4. The angle ¢ between the matrices (39) is equal

to % if the Hadamard product (40) of the matrices (39) is

zero matrix.
Proof. From Definitions 1 and 3 it follows that AcB =0
implies

@1) (A,B)= % i =0.

|| MB

In this case from (35b) we obtain cos@ =0 and (p:% ]

Example 3. Using (40) for the matrices

i A_10—2 B_010
(42) o -1 3" |20 0

we obtain

0 0 0
(43) AoB=

0 0 0
and

o 2 3
(44) (A’B):.Z:lzlaijbij :0
i=l j=

Therefore, by Theorem 4 the angle between the matrices
(42) is equal %

Theorem 4. The angle ¢ between the matrices
A=[a;]e R™™, B=[b;]e R™™ satisfies the condition

cos@ = 0 if and only if

(45a) (A,B)= Z Za,lb >0

i=1j=l1
and cos@ < 0 if and only if

@5b) (A,B)= Z Z a,,b <0.

Proof. Note that |f (45a) is satisfied then from (35b) it
follows that cosg >0 since |K| >0 and |§| >0.
Proof of (45b) is similar. o

A matrix A=[g;]e R"™™ is called the Metzler matrix if

a; 20 for i#]j, i,j=1..,n. The Metzler matrix is

asymptotically stable (Hurwitz) if and only if there exists a
strictly positive vector A =[4,....,45], A4 >0, k=1..,n
such that [17]

(46) AA<O.

Examples of electrical circuits with Metzler state matrix A
are given in [17].

Theorem 5. The angle ¢ between two asymptotically

stable Metzler matrices A=[a;]e M, B=[b;]eM,

satisfies the condition 0 < ¢ < % .

Proof. From (45) it follows that the diagonal entries a;; and

b;j for i=1...,n of asymptotically stable Metzler matrices A
and B are negative. In this case the condition (45a) is

satisfied and 0 < ¢ <% .O

Example 4. Consider the following two asymptotically
stable Metzler matrices

{—2 1 } {—1 1 }
47y A= , B= .
0 -3 0 -1
Using (33), (35b) and (47) we obtain

-2 -1

(48) A = (1) , B= ,(K,§)=6,|K|2:14,|§|2:

-3 -1
and o

_(A,B)= 6 _
(49) COSQD——‘KHE‘ —\/ﬁ\/g 0.926

This confirms the thesis of Theorem 5.
Example 5. Find the cos¢ between asymptotically stable

Metzler matrix A given by (47) and the unstable Metzler
matrix

50) B=| |
(50) o 2

In this case we obtain

-2 1
o0 A=| L B\ &) -7 [ =14.[B] -0
0 0
-3 2
and
(A.B) 7 =-0.764 .

(52) cose ‘ ‘

Theorem 6. Consider the electrical circuits shown in Fig. 2
with given parameters R, L, C for two choices of the
components of their state vectors. The angles between two
matrices corresponding to different choice of the state
variables in state vectors is the same.
R 2
(53) cosgy = (ﬁkl AkZ) L ¢ L
‘ Aa Akz‘ LA
R’C L C
Proof. Using (35b), (16b) and (16d) we obtain

for k =2,3,4.
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1] 0
RC 1
_ L L
(54a) A= C |, Ap=|_1
1 C
L _b
| 0 ] RC |
and
2
(54b) cosq)z:(éﬂ’én) T C L
‘AQI Aaz‘ LA
R’c L C

since

2 2 2
(540 \521\4522\:\/(%) GECE

Proof for k =3.4 is similar. o
Remark 1. For the electrical circuit shown in Fig. 1 the
angle between two matrices A;; and Ay, is given by

(ALAL) _ 2
el e e

(55) <0

cosgy =

and is different from the ones of Fig. 2.

Now let us consider the angles between the state matrices
of the electrical circuits A.jand their inverses Ak_ll for
k=1,..,4.

Taking into account that for the electrical circuit shown in
Fig. 1

[ 1
56 e o A= TRCh
(56) All_ _l _B an All - C 0
L L L
we obtain o
0
1 -RC
_ C — | -L
(67a) Au=|_L11. Ar=|
L
_R 0
L L]
and
!
cos@l:( 11’51_11)
‘AIIHAII‘
(57b) c,.Lt .
=— L C <0
2 2 2
1 + 1 + R \I(RC)2+L2+C2
c L L
For the electrical circuit shown in Fig. 2a we have
__L_
RC 0
e
(58a) Ay =| c |. A1 =|_¢c
1 L
L R
(- 0 -

and

Ao, A51)
‘AZI AZI‘
L

IR

In a similar way for the electrical circuit shown in Fig. 2b we
obtain

CosQ, =

(58b)

<0

_1
RC 0
_ 1 _, |-t
(5%a) A= c |. A1 =| ¢
1 L
L R
- 0 -
and
cosip, = Por:Ast)
A A
(59b) L
C <0

T oF—

For the electrical circuit shown in Fig. 2c we obtain

1
RC 0
R I R
©a) Au=| c |. A= c
1 L
L R
. 0 -
and
C05(/)4_('“‘41aA41)
‘A41HA41‘
(60b) %
<0

T e

Corollary 2. From comparison of (58b) and (60b) we have
cos@, =cos@, and all cosgy , k=1,2,3,4 are negative.
The above considerations can be extended to linear
electrical circuits for n > 2 .

Concluding remarks

Generalized Frobenius matrices and their inverses have
been applied in analysis of the linear electrical circuits. The
properties of generalized Frobenius matrices have been
analyzed. It has been shown that if the state matrix of
electrical circuit has generalized Frobenius form then its
inverse system matrix has also Frobenius form. The notion
of an angle between state matrices of linear electrical
circuits has been proposed and its basic properties have
been investigated. The considerations have been illustrated
by examples of linear electrical circuits with state matrices
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in generalized Frobenius forms. The considerations can be
easily extended to fractional linear electrical circuits.
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