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Abstract. This paper presents a robust linear quadratic regulator with an integral action (LQR+i) designed for Z-source DC-DC converter (ZSC) 
operating in conduction continuous mode (CCM). Depending on converter’s commutation states and using the electrical equivalent circuits, both 
switched and small-signal models of ZSC are built. The design procedure of LQR + i controller is described. The robustness of the controller is 
tested, using Matlab/Simulink software, considering circuit parameter (source and load) uncertainties and external signal (reference voltage) 
disturbance. A comparison study with classical PI controller are performed. It has been shown that the robustness of LQR + i controller is better than 
classical PI controller. 
 
Streszczenie. W artykule zaprezentowano liniowy, kwadraturowy sterownik w włączonym LQR zaprojektowany do przekształtników DC-DC ze 
źródłem Z. Odporność kontrolera była testowania przy wykorzystaniu programu Matlab/Simulink. Porównano sterownik z klasycznym układem PI.   
Sterownik z własną akcją  LQR  do przekształtników DC-DC ze źródłem Z 
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Introduction 
Power electronics DC-DC converters became a key part 

of renewable energy conversion systems such as 
photovoltaic, wind and fuel cell [1-3]. Generally these 
systems are sources of low voltage and power, therefore 
high-voltage step-up DC-DC converters [4, 5] are required 
as an interface between the voltage source and output load 
in order to provide high output voltage. With conventional 
boost converters, it is complicated to obtain high voltage 
gain, mainly because requirement of extreme duty cycle, 
which a high stress on switching devices is produced [6]. 
Using extreme duty cycle may also lead to poor dynamic 
responses to line and load variations. 
 In order to increase the voltage gain and to avoid 
extreme duty cycle, the Z-source DC-DC converter (ZSC) 
has been appeared as an alternative power conversion 
topology that can both reduce and increase the input 
voltage using only a LC impedance network and one active 
switch, a thing that cannot carry out with the traditional 
converters [7]. Figure 1 represents the basic topology of 
ZSC, which consists of two inductors (L1 and L2) and two 
capacitors (C1 and C2 ) connected in X form for coupling 
the main circuit of converter to the power supply, which 
provides an amplification means of the input voltage. The 
ZSC may be open or shorted, without the risk of  damage 
the switching devices [7, 8]. Due to this particular structure, 
ZSC has a switching state in which the load terminals are 
shorted to switch terminals. This state is called shoot-
through (ST). 

 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Basic topology of Z-source DC-DC converter 
 

ZSC is switched nonlinear system. It represents a major 
challenge in the control design. In the most studies that 
have addressed the ZSC control, conventional controllers 
were applied [9-11]. These controllers are designed using 
conventional linear control techniques in which the small 

signal model is derived from the linearization around a 
nominal point of space state average model [12, 13]. In 
these techniques the switching effects are averaged when 
the converter is operating in steady state and the system 
can be treated as a linear system. However, switching is 
not the only source of nonlinearities in DC-DC converters, 
the changes in system parameters, well-known as 
parametric uncertainty, can also be another non linearity 
sources. A problem of interest for DC - DC converters is to 
maintain stability and good regulation of the output voltage 
for parametric uncertainties and/or under external 
disturbances. One solution to overcome the parametric 
uncertainty problems is the use of the optimal control [14]. 
Linear quadratic regulator (LQR) which is one of methods 
of optimal control has been widely developed and 
successfully used in DC-DC converters [15-25]. 

In this paper, linear quadratic regulator with an integral 
action (LQR+i) technique is designed to regulate the Z-
source DC-DC converter output voltage. For this purpose, 
the following contents are addressed: Section 2 describes 
both the switched model and the small-signal model of the 
converter; Section 3 presents the fundamentals and design 
method of LQR+i controller; Section 4 presents the 
simulation results for the designed controller and a 
comparison with a conventional PI controller. Finally, the 
general conclusion of the paper is presented in section 5. 
 
Converter modeling 

It is assumed that the ZSC operates in continuous 
conduction mode (CCM). Considering L1 = L2 = L and C1 = 
C2 = C then iL1 = iL2 = iL and vC1 = vC2 = vC [2]. Depending on 
the state of the switch S and during one cycle switch, ZSC 
has two operation modes : The Non Shoot-through mode 
(NST) (Fig.2-a) and Shoot-through (ST) mode (Fig. 2-b). 
The first mode occurs when diode D is closed (ON) and S is 
open (OFF). When D is OFF and S is ON occurs the 
second mode. 
Both modes are described by affine time invariant 

differential equations invBxAx 11   and invBxAx 22   

respectivily. x is the vector of state variables iL, vC, iLo and vo. 
The switched model that describes the ZSC is given by:  
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where ݀	 ∈ 	 ሼ0, 1ሽ is the control signal, vin is the input 

voltage, vo is the output voltage and Lo, Co and Ro are the 
parameters output filter and load respectively. The state 
matrices are given by: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. (a) Non Shoot-through mode. (b) Shoot-through mode 
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 In the steady state Xss, the values of voltages and 
currents are given by equation (2).  
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where D is the duty cycle given by 
 
 inoss

inoss

VV

VV
D



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2

. The 

control objective in power converter is to enforce vo to track 
a given constant reference voltage Vref  (eq. (3)).  
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As can be seen, the model obtained in equation (1) 

presents products between state variables and the control 
signal so that which is considered a nonlinear model. To 
linearize it, a common approach is to apply the perturbation 
and linearization technique around the operating point 
(steady state) to obtain the linear small signal model [12]. 

The state (x), input (vin) and control signal (d) variables are 
decomposed into the sum of a steady state value (Xss, Vin 
and D) plus a disturbed value (ݔ෤, ݒ෤௜௡	and ሚ݀ሻ as follow: 
 

ݔ          ൌ 	ܺ௦௦ ൅ ௜௡ݒ ;෤ݔ ൌ ௜ܸ௡ ൅ ݀ ;෤௜௡ݒ ൌ ܦ ൅ ሚ݀               
 

The linearisation around the steady state (eq . (3)) gives 
the following small signal linear model: 
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We can rewrite equation (4) in the following compact form: 
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where  ݑ෤ ൌ ሺݒ෤௜௡, ሚ݀ሻ்	is the vector input and the matrices  
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Using the Laplace transform, the small-signal model (eq. 
(4)) can be used to derive power-stage transfer functions 
such as open-loop input-to-output voltage and control-to-
output voltage transfer functions. By setting the small-signal 
perturbation ݒ෤௜௡ = 0, the control-to-output voltage transfer 
function Gvd (eq. (6)) is derived.  
  

ሻݏ௩ௗሺܩ																		 (6) ൌ
௩෤బሺ௦ሻ
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where		݇ ൌ
ଵ

ሺଵିଶ஽ሻమோబ
, 	ܾଶ ൌ െሺ1 െ ଴ܴܥܮሻܦ2 ௜ܸ௡, ܾଵ ൌ
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LQR controller with an integral action  

 LQR technique offers a regulator such that the system 
evolves in a way that physical constraints are satisfied, 
control objectives are met, and at the same time a 
previously defined cost function J (eq. (8)) is minimized [14]. 
Let us consider a continuous-time system defined as follow:  
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The aim is to find the stabilizing feedback control law u = -
Kx that minimizes the following cost function:  
                    

(8)                    dtRuuQxxJ TT



0

                       

      
where Q and R are state and input weighting matrices.  
 

These matrices are considered as the tuning 
parameters of LQR by observing Q as state error penalty 
and R as penalty on control input. Q is required to be 
positive definite or positive semi-definite symmetry matrix 
and R is required to be positive definite symmetry matrix. 
One practical method is to Q and R to be diagonal matrix. 
The selection of elements of these matrices is normally 
based on iterative procedure using experience and physical 
understanding of the problems involved [14]. In this work, 
the trial and error method is used to set the elements of Q 
and R. The matrix gain K is defined as:  
 
ܭ                       (9) ൌ െܴିଵܲܤ                                    
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where P is a symmetric semi-definite matrix denotes the 
stabilizing solution of the algebraic Riccati equation (ARE): 
  

(10)              01   QBPBRPAPA TT                      
 

 Since the objective of the LQR control is to bring the 
state x as close as possible to the reference state ܺ௥௘௙  (eq. 
(3)), the feedback control law takes the form:  
 

(11)                      KeXxKu ref                           
 

where e = x – Xref  is the vector tracking error. The orginal 
model is transformed to a following error dynamics model:  
 

(12)                     BuAee                                         
 

 The system model may show deviations, which can be 
sources of disturbances in the control system and, 
therefore, steady state errors. It is well known, from the 
classical control theory [14], that the incorporation of an 
integral part in the controller allows to reject asymptotically 
the perturbations. It is therefore desirable to add integral 
action in order to override the steady state error. The block 
diagram of LQR with integral action (LQR+i) is shown in 
figure 3. The state equation of the integrator is given by 
equation (13). 
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Now, if we define a new augmented state vector as 
݁௔௨௚ ൌ ሾ݁	, ݁௜ሿ்	we obtain 
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where the augmented matrices are given by: 
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Fig. 3. LQR controller with integral action 
 

If the system (eq. (14)) is controllable and observable, 
there is a single optimal control matrix Kaug such that the 
closed loop system with the control u (eq. (15)) is 
asymptotically stable.  
 

 (15)                       augaugaug eKu                               

 
where Kaug = [K  ki]. Based on the new system (eq. (14)), it 
is necessary to define the new matrices Q and R of the cost 
function J, which also increase its dimension. The elements 
of these matrices related to the original states condition the 
proportional part of the controller, whereas the elements 
related to the added states condition the integral part. Kaug is 
computed just like the original case. 

Results and analysis  
In this section, simulation results demonstrating the 

potential advantages of the proposed control methodology 
are presented. The circuit parameters expressed in the 
international standard system are given by Vin = 24 V , L = 
100 µH, C = 10 µF, Lo = 100 µH, Co = 25 µF, R = 12 Ω. The 
desired output voltage is Vref = 48 V . Therefore the rest of 
desired operating point is (eq. (3)): D = 0:333, ILss = 8 A, VCss 
= 48 V , ILoss = 4 A and Voss = 48 V . We select matrices Q and 
R by trial and errors and are given by 
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We can calculate the solution to the LQR problem by using 
"lqr" function in Matlab’s Toolbox. The matrix gain Kaug is 
given by  

௔௨௚ܭ ൌ ሾ1581.2		 െ 0.02			0.01		 െ 2			0.01ሿ 
 

Firstly, the operation of the controlled converter to work 
at the nominal operating point (Vref = 48 V , Vin = 24 V , R = 12 
Ω) is checked and compared with open loop (OL) control 
converter (Fig. 4).  We can clearly see that LQR+i allows the 
system to track the reference voltage Vref very quickly and 
without oscillations. The performance of LQR+i controller to 
track Vref is checked. Figure 5 depicts the inductor current iL 
and  the output voltage vo for a Vref change from 48 V  to 
57.6 V at t = 20 ms. We can easly see the good tracking of 
the controller. In order to test the robustness, Vin is varied 
from 24 V to 18V at t = 15 ms and from 18 V to 24V at t = 25 
ms. Figure 6 shows the excellent recovery of LQR+i 
controller features. Figure 7 despicts the validity LQR+i 
scheme when Ro is subjected to a variation of 25% of its 
nominal value. This variation occurred during a time t = 10 
ms. The robustness of LQR+i controller is compared with a 
conventional PI controller. Taking into account the LTI 
model obtained  in (eq. (6)), the PI controller for the 
converter is designed using classical frequency domain 
technique (phase margin PM > 45o). A modulator pulse 
width  (PWM) is used with a ramp frequency of 20 kHz. The 
transfer function of the PI controller is shown in equation 
(16). 

(16)                  
s

sC
001.0

003.0)(   

 
Fig. 4. Output voltage (a) and inductor current (b) waveforms for 
open loop and closed loop system 
 

The comparison result is presented in Figure 8. The 
system was perturbed by changing Vin  nominal value. We 
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can see that LQR+i response are more better than PI 
response and LQR+i controller is more robust with respect 
to parameters variations than PI one. 
 

 
Fig. 5. Output voltage (a) and inductor current (b) waveforms for 
step change in Vref . 
 

 
 
Fig. 6. Output voltage (a) and inductor current (b) waveforms 
for step change in Vin. 
 

 

 
Fig. 7. Output voltage (a) and inductor current (b) waveforms for 
step change in RO 
 
 

 
 
Fig. 8. Output voltage waveform for Vin variation 
 
Conclusion 
 In this work, a LQR controller with an integral action is 
designed for Z-source DC-DC converter. After converter 
modeling and controller design, simulations have been 
done by Matlab/Simulink software. The simulation results 
show the validity of the overall converter-controller model.  
Through the robustness test of the controller, it has been 
shown that the system attains a robust output voltage to 
variations and changes imposed on voltage source and 
load. The performances of LQR+i controller is compared to 
that of conventional PI controller in the case that line 
disturbance enter the system. The results showed that 
LQR+i  controller has good robustness  against disturbances 
than PI controller. 
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