
110                                                                                      PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 6/2019 

Maciej WAWRZYNIAK 

Poznan University of Technology, Faculty of Electronics and Telecommunications 
 

doi:10.15199/48.2019.06.20 
 

Effect of Nanocontacts on Transient States in Electrical Circuits 
 
 

Abstract. This paper proposes a model of mechanical switch with stretched nanocontacts based on an analysis of the mechanisms of electron 
transport within a nanocontact. We use the model proposed to derive equations describing the current in a circuit with an opening switch. The 
measurement data and the calculation results confirm that nanocontacts substantially modify transient states in the studied circuit and therefore their 
effect must be taken into account in theoretical analysis. 
 
Streszczenie. W artykule na podstawie analizy mechanizmów transportu elektronów w obrębie nanozłączy zaproponowano model łącznika 
mechanicznego z rozciąganymi nanozłączami. Na podstawie modelu wyprowadzono wzory opisujące prąd płynący w obwodzie elektrycznym 
podczas otwierania łącznika. Wyniki pomiarów i obliczeń potwierdziły, że nanozłącza w sposób znaczny modyfikują stany nieustalone prądu w 
badanym obwodzie, co potwierdza konieczność uwzględnienia tego efektu w analizie teoretycznej. (Wpływ nanozłączy na stany nieustalone w 
obwodach elektrycznych). 
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Introduction 
Atomic-sized conductors have been intensively studied 

for more than ten years, resulting in the discovery of many 
interesting effects that do not occur in conductors larger in 
size [1]. A two-position switch [2] and a transistor [3] based 
on a single metal nanocontact placed on a substrate have 
been designed and verified to operate. Nanocontacts have 
been proposed to be used in sensors for the detection of 
lead and copper ions [4], terahertz signals [5] and linear 
shift [6]. Studies have also shown that nanocontacts can 
form between the contacts of a mechanical relay [7, 8] or a 
MEMS switch [9]. Of special importance is the observation 
of nanocontacts created in MEMS switches, used in radar 
components [10] and reduced power consumption systems 
[11]. Intensive research is conducted to improve the 
reliability, lifetime and switching rate of micromechanical 
switches. This requires an in-depth insight into the 
temperature effects [12], adhesion [13], creep [14] and wear 
[15]. The resistivity and hardness of the contact material as 
well as the surface topography affect the contact resistance 
[16]. The observed creation of nanocontacts makes this 
effect relevant for the analysis of the properties of MEMS 
switches and circuits including MEMS switches. 

Using switches in an electrical circuit results in the 
occurrence of transient states in the circuit when a switch is 
being opened or closed. A switch in a circuit is modeled as 
a two-state device characterized by two parameters, the 
closed-state resistance and the open-state resistance. 
However, if a nanocontact forms between its terminals in 
the opening or closing process, a switch cannot be modeled 
as a two-state element. This must be taken into 
consideration in the analysis of transient states in an 
electrical circuit including such a switch, as discussed in 
Ref. [17] for the final stage of the opening process. In this 
paper we present measurements and a theoretical analysis 
of the whole process of opening a mechanical switch and 
derive equations that fully describe the current-time 
dependence in transient states. 
 
Model of mechanical switch with stretched nano-
contacts 

When a mechanical switch is being closed its electrodes 
collide and a contact is made between the compressed 
electrodes. The compressive force acting on the electrodes 
is referred to as the contact force. The conductance of the 
contact increases with the contact force [18]. An adhesive 
connection is created as a result of the collision and 
compression of the electrodes. In an opening mechanical 

switch the electrodes move apart; the contact force 
decreases at first and then reverses direction, which results 
in stretching the adhesive connection area. Due to surface 
irregularities, a number of contact spots occur between the 
separating electrodes [19, 20]; these nanocontacts break 
successively as the electrodes continue to move apart. At 
the final stage of the stretching process a single 
nanocontact remains between the electrodes. This 
nanosized neck between the macroscopic electrodes 
narrows to the size of a single atom to break in the end [1]. 
Figure 1a shows the conductance trace (i.e., the measured 
time dependence of the conductance) of a contact created 
between the gold electrodes of an opening switch. The 
measurements were performed with an experimental setup 
described in Ref. [21]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. a) Conductance trace of the contact between the gold 
electrodes of an opening mechanical switch (see text for details). In 
the inset (top left), photograph of the electrodes of the mechanical 
switch used in the measurements. b) Calculated Sharvin, Maxwell 
and Wexler conductances vs. Knudsen number, compared with the 
experimental dependence resulting from the measurement data 
presented in a) (see text for details) 
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In this experiment we used a homemade switch with 
copper electrodes coated with a 5 m thick nickel layer and 
a 0.2 m thick gold layer on top. The switch offered a choice 
of electrode separation rates, which are proportional to the 
contact stretching rates. The photograph in Fig. 1a, inset, 
shows the electrodes (with diameter D = 1 mm) with 
hemispherical ends (of radius D/2). In the three ranges 
indicated in Fig. 1a the shape of the characteristic results 
from different mechanisms of contact stretching and 
electron transport in the contact. Range I, indicated with a 
red double-ended arrow line, corresponds to the initial 
phase of electrode separation. Immediately before this 
phase the electrodes were compressed. As the electrodes 
move apart, the nanocontacts between them break 
successively, resulting in mechanical instabilities, which can 
lead to a short-time increase, observed in range I, in the 
conductance-time dependence. Also surface contaminants 
have a substantial effect on the conductance of the contact 
in this range [22]. Indicated with a green double-ended 
arrow line, range II corresponds to the next phase of 
contact stretching. The shape of the conductance-time 
dependence in this range is due to the mechanism of 
electron transport, which changes from diffusive to ballistic 
with decreasing contact radius [1, 18]. In range III (blue 
double-ended arrow line) the conductance changes in a 
stepwise fashion. The conductance plateaus observed in 
this region correspond to metastable atom configurations in 
a single stretched nanocontact. In a metastable atom 
configuration the conductance is roughly constant and the 
nanocontact undergoes elastic deformation until the stress 
reaches a critical value and the system relaxes abruptly to 
another metastable configuration [23, 24]. Atom 
reconfigurations occur in the narrowest part of the 
nanocontact/neck and result in plastic deformation. Sudden 
reconfigurations of atoms in a stretched nanocontact 
following an elastic stretching phase occur also in region II. 
However, in this region atom reconfigurations are more 
frequent and the conductance plateaus corresponding to 
elastic stretching are poorly visible [23]. 

For the comparison of the measurement data obtained 
for regions I and II with the theoretical dependences based 
on the Sharvin conductance formula [25]: 
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assuming that the minimal cross section A of a nanocontact 
is a circle with radius r (A =  r2, circumference P = 2 r), we 
determine r for a single nanocontact: 
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where G is the conductance of the nanocontact, G0 = 2e2/h 
the conductance quantum, and F the electron Fermi 
wavelength ( 0.52 nm in gold). Next, from equation (2) we 
determine r for the last experimental value of G/G0 in range 
II; the obtained radius is r = 1.17 nm. In the characteristic 
presented in Fig. 1a this point is just before the appearance 
of conductance steps. Thus, we can assume ballistic 
electron transport and use the Sharvin formula. We can 
also assume that there is only one nanocontact between 
the electrodes, as indicated by the conductance steps 
following region II. In many studies such conductance steps 
have been observed in a single stretched nanocontact [1]. 
Equation (2) can be rewritten as [26]: 
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where  is the resistivity and l the electron mean free path. 
From equation (3) we calculate the resistivity for the value 
of r determined above and l = 3.8 nm (Ref. 24). We obtain 
 = 2.2610-7 m, a value an order of magnitude larger than 
the resistivities of macroscopic conductors. The Sharvin 
equation can be used in the case of ballistic electron 
transport; in a conductor with a cross-section radius r this 
corresponds to r < l. If r >> l, the electron transport is 
diffusive, and the resistance of the conductor should be 
determined from the classical Maxwell formula (also known 
as Holm’s classical relation) [26, 1, 18]: 
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The transition region between the diffusive and ballistic 
transport regimes (with r  l) is referred to as quasiballistic. 
The conductance in this regime can be determined from the 
interpolation Wexler formula [27] modified by Mikrajuddin et 
al. (Ref. 28): 
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where  is the Knudsen number (K = l/r). The original 
Wexler formula contains a slowly varying function (K), 
which is replaced by M(K) in equation (5) (Ref. [28, 29]): 
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For the comparison of the measurement data for ranges I 
and II with theoretical curves based on equations (3), (4) 
and (5) we assume a linear decrease of the effective 
contact radius from reff = rmax to the value reff = rmin = 1.17 nm 
determined above; the effective contact radius reff  allows for 
the possibility of multi-nanocontact connection between the 
electrodes. For the determination of reff in the contact 
stretching phase with more than one contact spot between 
the electrodes the nanocontacts can be regarded as 
resistors connected in parallel [30]. This, under the 
assumption that the cross section of each nanocontact in its 
narrowest point is circular, leads to the relation: 
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where ri is the radius of nanocontact i. Figure 1b compares 
the Sharvin (blue solid line), Maxwell (black solid line) and 
Wexler (green dashed line) conductance values determined 
from equations (3), (4) and (5), respectively, with the 
measurement data obtained for ranges I and II. The 
conductance values are plotted versus the Knudsen 
number K in the range K1 = l/rmax to K2 = l/rmin 
(rmin = 1.17 nm, l = 3.8 nm). The assumed value of 
rmax = 7.14 nm provides the best fit of the experimental data 
to the Wexler conductance formula. Arrows in the plot 
indicate characteristic points A, B, C, D and E of the 
experimental dependence. To a good approximation, the 
experimental data fit the theoretical curve resulting from the 
Wexler formula between points C and D. Between D and E, 
as predicted, the experimental conductance characteristic 
draws near to the Sharvin dependence. Also confirming 
predictions, the experimental characteristic approaches the 
Maxwell dependence between C and B. In the segment 
between points B and A the experimental characteristic 
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diverges from the Maxwell dependence. The adopted model 
assumes constant resistivity and mean free path in the 
whole range considered. A more detailed model should 
allow for changes of these physical quantities with the 
contact radius. Our model also assumes a linear time 
dependence of the nanocontact radius. Locally, however, r 
can follow a different time dependence, as a consequence 
of the changing (elastic, elastic-plastic and plastic) 
character of the contact stretching. Moreover, in the initial 
phase of the separation of the electrodes, when the contact 
force decreases, reff is directly proportional to the square 
root of the contact force [18, 19]. Also the effects of 
adhesion energy of contact surfaces, roughness and 
mechanical stiffness of the electrodes, surface impurity 
layer, temperature and humidity [31, 13, 12] could be taken 
into account in the model for a better fit between points B 
and A. 

In range III the diameter of a nanocontact is comparable 
with the Fermi wavelength of electrons. The total 
conductance of a nanocontact is determined by the number 
of electron wave modes passing through the narrowest part 
of the metastable atom configuration in the nanocontact. In 
electrical terms, electron wave modes propagating through 
a nanocontact are referred to as conductance channels. 
Using the model of nanocontact and the method of 
calculating electrical conductance proposed by Rolf 
Landauer we obtain the following relation, which provides a 
basis for the determination of the conductance of a 
nanocontact [1]: 
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where G0 = 2e2/h is the conductance quantum, Tn denotes 
the total transmission probability through the n-th 
conductance channel, and N is the number of conductance 
channels considered. The transmission probability can take 
on values in the range 0  Tn  1. Transmission probability 
Tn = 0 means that the n-th conductance channel is closed. 
When Tn = 1, the conductance of the n-th channel is equal 
to the conductance quantum G0 (which corresponds to a 
channel resistance of ca. 12.9 k). For 0 < Tn< 1 the 
conductance of the n-th channel is smaller than G0 (the 
channel is only partially open, and its resistance greater 
than 12.9 k). Conductance steps higher than G0 
(resistance < 12.9 k) occur as a result of closing two or 
more conductance channels in the nanocontact between 
two successive metastable atom configurations. 
 
 
 
 
 
 
 
 
 
Fig. 2. Model of stretched nanocontact for range III in Fig. 1(a) 
 

Figure 2 presents the proposed model of stretched 
nanocontact for range III, in which successive conductance 
channels close as the nanocontact is being stretched. In the 
diagram shown in Fig. 2 conductance channels are 
modeled as resistances connected in parallel. The closing 
of conductance channel n in the nanocontact corresponds 
to the opening of disconnector n. The resistance values 
before and after the closing of conductance channel n (the 
opening of switch n), denoted below by Rn– and Rn+, 
respectively, obey the equations: 
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where n is the channel number in order of closing 
(n = 1, 2, 3, ..., N), N is the total number of conductance 
channels considered, tn the time of closing of channel n, t0 a 
reference time (for n = 1 t = t0, which corresponds to the 
beginning of the analysis), and Rk denotes the resistance of 
channel k. The resistance RN+ of the nanocontact after the 
closing of the last conductance channel fulfills the equation: 
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From equations (9) and (10) it follows that for n = 2, 3, ..., N: 
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Once the resistance values before and after the closing of 
successive conductance channels are known, the 
resistances R1, R2, R3, ..., RN of the conductance channels 
can be determined from the following relation, resulting from 
equations (9) and (10): 
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where n < N and Rn = Rn– for n = N; resistances Rn– and Rn+ 
are the plateau values in the conductance trace in the 
stepped conductance range. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Stepwise changes of the conductance and resistance of a 
stretched nanocontact: a) the last five conductance steps before 
the breaking of the nanocontact in range III in Fig. 1a; b) the 
corresponding time dependence of the nanocontact resistance; c) 
nanocontact model based on equation (12) 
 

Figure 3a shows the last five conductance steps in 
range III of the conductance trace presented in Fig. 1a. The 
corresponding time dependence of the nanocontact 
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resistance is shown in Fig. 3b. The number of conductance 
channels considered is N = 5. Successive channels close at 
times t1, t2, t3, t4 and t5. The resistance plateau values R1–, 
R2–, R3–, R4– and R5– are indicated by arrows in the plot. The 
resistance values R1, R2, R3, R4 and R5 corresponding to the 
closing of successive conductance channels in the adopted 
model are calculated from equation (13). Figure 3c presents 
the model of the considered nanocontact, the conductance 
trace of which is shown in Fig. 3a 
 
Comparison of theoretical and experimental results. 
Continuous nonocontacts conductance changes 

The nanocontacts that can form between the electrodes 
of an opening switch have an influence on the transient 
states of the current in the circuit containing the switch. 
Because of the changing character of the conductance-time 
dependence in the opening switch, the current in the circuit 
should be analyzed first in the range preceding the 
conductance steps, with continuous conductance changes 
(ranges I and II in Fig. 1a), and only then in the stepped 
conductance range (range III in Fig. 1a). In the range 
preceding the conductance steps the current in the circuit 
results from the time variation of conductance due to the 
stretching of the contact between the electrodes. Figure 4a 
shows an electrical circuit represented by an impedance Z 
at the moment of disconnecting of a voltage V by a switch 
Sw. A resistance R is included in the circuit for current 
measurement. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Transient state in a circuit before the occurrence of 
conductance steps (ranges I and II in Fig. 1a): a) diagram of the 
circuit for the measurement of the current i(t); b) the measured 
current (red solid line) compared with the current calculated from 
equation (14 ) (blue dashed line) 
 

The current in the circuit in a transient state (during the 
opening of the switch) before the occurrence of 
conductance steps can be calculated from the following 
equation: 
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where GW(K) can be calculated from equation (5) for 
K = l/r(t). The time dependence of the contact radius in the 
model described above can be calculated from the following 
equation: 
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where rmin is the nanocontact radius calculated from 
equation (2) for the measurement point directly before the 
conductance steps (last point in range II in Fig. 1(a)), for 
which t = tmax; a is the rate of change of r per unit of time 
resulting from the fitting of the experimental data (red solid 
line in Fig. 1b) to the Wexler conductance formula (green 
dashed line in Fig. 1b) for a given rate of electrode 

separation (0.84710-6 m/s for the results presented in 
Fig. 1b). Figure 4b compares the instantaneous current 
measured in the range preceding the conductance steps 
(red solid line) with theoretical values calculated from 
equation (14) (blue dashed line). The good agreement 
between the theoretical dependence and the experimental 
data validates the model and the theoretical current-time 
dependence used. 
 
Comparison of theoretical and experimental results. 
Stepped nonocontacts conductance changes 

A number of successive transient states may occur in a 
circuit containing a mechanical switch when conductance 
decreases in steps as a result of nanocontact stretching. 
Each if these transient states is caused by the closing of a 
conductance channel in the stretched nanocontact. Figure 
5a shows an electrical circuit represented by an impedance 
Z at the moment of removing a voltage V by a mechanical 
switch Sw in the phase where conductance decreases in 
steps as the nanocontact created between the contacts of 
the switch is being stretched. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Analysis of current in the circuit at the moment of opening of 
switch Sw in the phase where conductance decreases in steps as a 
result of nanocontact stretching between the terminals of the 
opening switch: a) diagram of the circuit used in the analysis; b) 
Laplace model of diagram a) after transformations 
 

Based on the model of the nanocontact, the channel 
resistances R1, R2, ..., RN can be determined as described in 
second section. Nanocontact resistances Rp and Rp+ before 
and after the opening of switch n = p (closing of channel 
n = p), respectively, can be determined from equations (9) 
and (10) with n = p. The effect of the stepwise changes in 
the nanocontact conductance on the transient states of the 
current i(t) will be the most apparent if the impedance Z of 
the circuit connected to the switch Sw can be replaced by 
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the equivalent circuit, shown in Fig. 5a, with inductance L, 
resistance RL, and capacitance C. Also shown in the 
diagram is a resistor R, included for the measurement of the 
current i(t) in the circuit. Using this schematic we are going 
to determine the current i(t) in the circuit after closing of 
channel p, which is represented by the open switch p in the 
diagram. 

Figure 5b shows the Laplace model of the circuit 
presented in Fig. 5a transformed for the determination of 
the current I(s) after the opening of switch p (where s is the 
Laplace operator). In this diagram the instantaneous current 
flowing through the inductor L immediately before the 
opening of switch p (at time tp) is denoted by iL(tp), and the 
instantaneous voltage across the capacitor C immediately 
before the opening of switch p (at time tp) is denoted by 
uC(tp). Using the loop current method we determine the 
current I(s) in the circuit in the Laplace domain: 
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Formulas for the determination of the constants A1 to A5 are 
provided in Appendix. Next, from equation (16) we 
determine the inverse Laplace transform for aperiodic and 
periodic circuits. In an aperiodic circuit the values of Rp+, R, 
L, RL and C must fulfill the condition: 
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In this case the current i(t) in the circuit has the following 
time dependence: 
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where tx = t  tp, and B1, B2, B3, B4, B5 are constants specified 
in the Appendix. In a periodic circuit the condition to be 
fulfilled by the values of Rp+, R, L, RL and C is: 
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In this case the current in the circuit has the time 
dependence: 
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where tx  t  tp, and B1, B6, B7, B8 and B9 are constants 
specified in the Appendix. Under the assumption that 
immediately before the opening of switch p (at time tp) the 
circuit was in a steady state, the instantaneous values of 
the current iL(tp) flowing through the inductor L and the 
voltage vC(tp) across the capacitor C can be calculated from 
the respective equations: 
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If at time tp the circuit was not in a steady state, the time 
dependences of the current iL and voltage vC before 
opening disonector p must be determined to provide a basis 
for the calculation of the instantaneous values of iL and vC 
at time tp. 

To verify equations (18) and (20) we simulated the 
impedance Z in the circuit shown in Fig. 5 by a capacitor 
with capacitance C = 330 pF and an inductor with 
inductance L = 94 mH and winding resistance RL = 409  
connected in parallel. In Fig. 6a we present the current 

trace measured during the opening of the switch Sw. For 
better readability, the graph only shows every twentieth 
signal sample, plotted with red diamonds. The current steps 
visible in the graph correspond to the last five steps in the 
conductance trace of the nanocontact created between the 
terminals of the switch. The respective times are denoted 
by t1 to t5. Next, using the method described in second 
section, we constructed a model of the switch based on the 
current-time dependence presented in Fig. 6a. The 
constructed model is shown in Fig. 6b.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. a) Experimental current-time dependence (red diamonds) 
compared with the characteristic resulting from the theoretical 
analysis (blue solid line) for the case when the character of the 
circuit changes from aperiodic to periodic (at time t4+) as a result of 
a stepwise decrease in conductance. b) Model of mechanical 
switch used in the calculations 
 

To decide which of the above-derived equations 
describing the time dependence of the current in the circuit 
should be used for the determination of the theoretical 
dependence we checked the character of the circuit after 
the opening of each disconnector in the switch model at 
times t1, t2, t3 and t4. After the opening of the model 
disconnectors at times t1, t2 and t3 the circuit parameters 
fulfill the inequality (17), which indicates that the circuit is 
aperiodic and the instantaneous current values can be 
calculated from equation (18). The opening of the model 
disconnector at time t4 results in circuit parameters fulfilling 
the inequality (19); thus, the circuit has a periodic character 
and the instantaneous current can be calculated from 
equation (20). The circuit parameter values adopted for 
inequality testing are: C = 330 pF, L = 94 mH, RL = 409 , 
R = 1 k, and R1+ = 3.64 k, R2+ = 4.66 k, R3+ = 6.83 k, 
R4+ = 13.79 k. In the next step we determined analytically 
the instantaneous current, using equation (21) for the range 
0+  t  t1, equation (18) for t1  t  t2, t2  t  t3, 
t3  t  t4, and equation (20) for t4  t  t5. For times t  t5 
the current in the circuit is 0. The analytical current-time 
dependence is represented by the blue solid line in the plot 
shown in Fig. 6a. 

Since the resistance of a switch with a nanocontact 
increases in time as successive disconnectors open in the 
model circuit, there are three possible scenarios of changes 
in character of the circuit as a result of the stretching of the 
nanocontact: the circuit is aperiodic after each conductance 
step, the circuit changes from aperiodic to periodic (case 
illustrated by Fig. 6), or the circuit is periodic after each 
conductance step. The latter case is illustrated by Fig. 7a, 
showing four current steps at times t1, t2, t3 and t4 measured 
in the circuit presented in Fig. 5a with the following 
parameters: C = 948 pF, L = 7.05 mH, RL = 168 , R = 1 k. 
For better readability, the plot only includes every twentieth 
sample of the measured characteristic (red diamonds). The 
experimental data are compared with the characteristic 
determined analytically (blue solid line). 
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Fig. 7. a) Experimental current-time dependence (red diamonds) 
compared with theoretical characteristic (blue solid line) for the 
case when the circuit is periodic after the current steps. b) Model of 
mechanical switch used in the calculations 
 

Figure 7b shows the model of the switch used in the 
analysis. The instantaneous current is determined from 
equation (21) for the range   t  t1, and from equation 
(20) for t1  t  t2, t2  t  t3, and t3  t  t4. After the 
opening of the model disconnectors at times t1, t2 and t3 the 
circuit parameters fulfill the inequality (19), which means 
that the circuit is periodic. Besides the parameters specified 
above, we put R1 = 4.758 k R2 = 8.689 k� and 
R3  14.123 k. for inequality testing. For times t  t5 the 
current in the circuit is 0. 

Figures 6a and 7a indicate that the current traces 
determined analytically are in good agreement with the 
experimental data, which validates the model proposed and 
the theoretical current-time dependences derived. 
 
Summary 

Our study and the analysis of its results demonstrate 
that when nanocontacts form between the terminals of an 
opening switch, its contact resistance results from the 
conductance of the stretched nanocontacts. The 
experimentally determined time dependence of the 
conductance of the switch used in the study has two 
segments that differ in the character of conductance 
changes, continuous in one segment and stepwise in the 
other. In the first segment the conductance of the opening 
switch can be determined based on the Wexler model, as 
described in the second section. In the other segment the 
conductance steps have a stochastic character and the 
conductance can be described by the Landauer formula. 
This equation provides a basis for the proposed model, with 
conductance channels represented by resistors connected 
in parallel. The resistances of the model resistors can be 
determined from the measured stepped conductance trace. 

Using the adopted models, we have determined the 
theoretical time dependences of the current in the circuit 
during the opening of the switch. For verification of the 
theoretical dependence we have measured the current at 
the time of opening of a mechanical switch removing 
voltage from a circuit represented by impedance Z. The 
measurement data, in good agreement with the calculation 
results, show that nanocontacts created between the 
terminals of an opening mechanical switch modify the 
transient states of the current in a circuit connected with the 
switch. This effect must be taken into account in the 
analysis of transient states in electrical circuits. 
In the initial phase of switch opening the current-time 
dependence can be determined analytically from an 
equation derived from the Wexler conductance formula. An 
especially interesting phenomenon is observed at the time 
of closing of conductance channels just before the last 

nanocontact breaks. Short-lived transient states occur in 
this phase as a result of the closing of successive 
conductance channels. For the determination of the current-
time dependence in this final phase of switch opening the 
character of the circuit, which can be aperiodic or periodic, 
should be tested for an appropriate choice of theoretical 
equation. 
 
Appendix 
The constants in formulas (16), (17) and (19) can be 
determined from equations (23) to (27). 
 

(23)  1041 bbA   

(24)    611042 bbbbA   

(25)  493 bbA   

(26)  24 bA   

(27)  35 25.0 bA   
 

The constants in equations (18) and (20) can be determined 
from equations (28) to (36). 
 

(28)  51 bB   

(29) 
   

7

25104611045104
2

5.0

2 b

bbbbbbbbbbb
B





  

(30)   723 5.0 bbB   

(31) 
   

7

61104210455104
4

5.0

2 b

bbbbbbbbbbb
B





  

(32)   725 5.0 bbB   

(33)  
    

8

51045211046
6 5.0

5.0

b

bbbbbbbbb
B


  

 

(34)  27 5.0 bB   

(35)  88 5.0 bB   

(36)  51049 bbbB   
 

The auxiliary constants in equations (23) to (36) can be 
determined from equations (37) to (46). 
 

(37)  
L

R
b L1  

(38)   CRR
bb

p


1
12  

(39)   LCRR

RRR
b

p

pL








 43  

(40)  



pRR

V
b4  

(41)  



pL RRR

V
b5  

(42)  
 

 CRR

ti
b

p

pL






6  

(43)  3
2
27 bbb   

(44)  2
238 bbb   

(45)  
CL

b
1

9   
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(46)  
 








p

pC

RR

tv
b10  
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