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Nonlinear system identification of a MIMO quadruple tanks 
system using NARX model 

 
 

Abstract. This paper has two main objectives. First, it gives an overview on the identification of MIMO nonlinear systems using NARX models. It 
covers the classical approach of the FROLS method, as well as the SEMP method. The second is to present some new useful results in model 
structure selection for NARX polynomial models applied to MIMO systems. It shows how to make a representation of MIMO systems from NARX 
polynomial models and the application of classical methods to identify these models. The study case used is a real didactic quadruple tank system 
manufactured by Quanser. 
 
Streszczenie. Artykuł ma dwa cele. Po pierwsze przedstawia przegląd metod identyfikacji nieliniowych systemów MIMO przy użyciu modelu NARX. 
Przedstawiono klasyczną metodę FROLS a także metodę SEMP. Po drugie przedstawiono użyteczne wyniki selekcji struktury wielomianowego 
modelu NARX zastosowanego do systemów MIMO. Nieliniowy system identyfikacji systemu MIMO przy wykorzystaniu modelu NARX 
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Introduction 
System identification is a knowledge area with the main 

objective of developing methods and techniques to find 
accurate and reliable mathematical representations for 
dynamic systems from observed data and available 
knowledge [1, 2]. A way to build these models is using 
information from collected system data to build ratios 
between inputs and outputs from the process, thus 
describing their dynamics. This method is called black-box 
identification since no information about internal details is 
used. 

Some real applications, especially industrial 
applications, have multiple-inputs and multiple-outputs 
(MIMO) systems. Such systems present some difficulties in 
obtaining mathematical models by physical laws (white-box 
modelling) or even by black-box methods to represent their 
dynamic behaviors. Therefore, linear models are used to 
represent the dynamics of such MIMO systems but they 
present lower quality than non-linear models. 

In black-box system identification, the representation of 
the polynomial nonlinear autoregressive moving average 
with exogenous input (NARMAX), proposed by [3], has a 
great performance in its ability to represent a nonlinear 
input-output relationship. In cases where the deterministic 
input-output relationship is the focus, a nonlinear 
autoregressive with exogenous input (NARX) model can be 
employed, using a simplification of the disturbance model 
[4]. Other researchers demonstrate these capabilities 
improved with applied techniques of structure selection and 
parameter estimation, enabling to find models with better 
representation and most robust performance, as explored in 
[5, 6]. 

Some papers propose the use of Artificial Neural 
Networks models [7, 8] or more elaborate methods [9, 10] 
for the task of identifying MIMO systems. However, NARX 
model-based identification methods, although generating 
less accurate models than the previously mentioned 
methods, have the advantage of generating simpler and 
easier models to apply to controllers such as PID or 
predictive, which are widely used in the industry. 

Didatic systems are often used to investigate the 
behavior of parameter estimation methods, for instance the 
Quanser water level control quadruple tanks module. The 
physical meaning of this didactic system can be interpreted, 
in real applications, like oil-water separators or chemical 
processes such as bio-reactors and water treatment. In 

most applications, this type of system is represented by 
linearized models around an operating point. 

This study shows step-by-step application and 
compares the use of two black-box system identification 
techniques, the Forward Regression Orthogonal Least 
Squares (FROLS) [11, 12] and the Simulation Error 
Minimization with Pruning (SEMP) [5], for parameter 
estimation and model structure selection (MSS) of NARX 
models in a MIMO real study case, the Quanser quadruple 
tanks module. The obtained NARX model proper 
characterizes the real process dynamic and can be further 
used in simulations in future works. 

The paper is organized as follows. The second section 
provides a basic framework for nonlinear system 
identification and briefly reviews two methods for the model 
structure selection problem. The third Section describes the 
coupled tanks used as a study case. The proposed method 
is illustrated in the fourth section and the results are shown 
in the fifth section. Finally, some concluding remarks are 
drawn in the sixth section. 
 
Nonlinear system identification 

System identification consists of four sub-steps [1, 13]: 
 Experiment execution to acquire data and data 

pre-processing;  
 Model structure selection;  
 Parameter estimation;  
 Model validation. 

As discussed in [14], choosing the signals used to excite 
the system has great importance in the identification 
process. In some cases, a step signal is sufficient to identify 
some process dynamics. However, in cases where it is 
desired to estimate parameters of higher order models or 
non-linear models, it is necessary to use signals capable of 
exciting the various dynamics of the system. Another 
important fact about data acquisition is that, in some cases, 
the obtained data set is contaminated by noise with high 
values. In these cases a pre-filtering is necessary, like the 
use of a low-pass filter for example. 

The model selection of structure (MSS) [15, 16, 17] 
problem for linear cases is often restricted to choosing the 
order of the model to be used, whereas for nonlinear 
models, this problem is more complex. This step is usually 
combined with parameter estimation. 

The Least Squares (LS) Method is efficient to estimate 
systems that have linear regressors, but in nonlinear 
systems it is possible that the regressors matrix is badly 



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 6/2019                                                                                67 

scaled, resulting in poor estimates, since they are 
susceptible to numerical error. In these cases the solution is 
to apply an orthogonalization method in the regressors 
matrix like the Classical Gram-Schmidt (CGS) or the 
Modified Gram-Schmidt (MGS) [11, 18, 19]. This approach 
is called Orthogonal Least-Squares, since the parameter 
estimation now will be done in an orthonormal basis space. 

To measure the quality of the identified model, the last 
step in system identification is model validation, a 
fundamental part of most studies, which consists of tests to 
confirm if the model can generalize the dynamics of the 
identified process, and furthermore, if it adequately 
represents the recorded data set [1, 20]. 

 
NARMAX models 

Introduced by [11] NAR(MA)X models have been 
exploited in literature as good representations for non-linear 
systems as present in [21, 22, 23], although this kind of 
model increases its intricacy when either the number of 
regressors or the non-linearity degree increase. A large 
number of irrelevant regressors can cause over-fitting, 
resulting in a poor generalization of the model [24]. 

As cited before, black-box identification is an approach 
that explains the present output value based on past 
observations of the system’s inputs and outputs. Since they 
are considered nonlinearities in the system, AR(MA)X 
models turn themselves into NAR(MA)X models, which can 
be described by Equation 1. 
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where F is a nonlinear function with l non-linearity degree, 
ny the maximum output order accepted, nu the maximum 
input order accepted and ne the maximum order for input 
noise regressors; or in polynomial form (Eq. 2). 
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where nθ is the total number of regressors parameters. 
 

NARX models have a good representativeness for non-
linear systems, although the total number of regressors 
increases according to the system’s order. In MIMO 
systems (Equation 3) this characteristic appears strongly, 
since the number of inputs and outputs from the system 
makes the total number of regressors grow exponentially. 

 

(3) 
=1 =1 =0

( ) = ( ) ( ) ( )
n n nn y u e

i
i j r q

y k c y k j u k r e k q


         

 

with α=1,…,qo, where qo is the total number of outputs and 
β=1,…,qi, where qi is the total number of inputs and 
nθ=qony+qinu. 

In the polynomial NARMAX and NARX models, there is 
a harder problem than parameter estimation. The number of 
candidates regressors increases rapidly when increasing 
the model’s order, as well as when increasing the maximum 
delays of input and output signals [25]. In [26] it has been 
shown that an overparameterized model exhibits dynamical 
regimes which are not found in the original system. Thus, 
there is not only a numerical or practical reason to do 
structure selection, but there is also a dynamic justification 
[27]. 

The maximum number of candidates regressors (nθ) 
grows when either the nonlinearity degree (l) or the 
maximum input and output delays (ny and nu) (and ne, for 
NARMAX models) increase, according to nθ=M+1, where M 
can be obtained by the Equation (4) [18]. 
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Model structure selection  
The MSS consists in choosing a subset of appropriate 

regressors from a set of candidates regressors that 
represent the dynamic of the dataset. Several studies have 
already worked on this problem [28, 26, 27, 29, 5, 30, 31, 
32, 33, 34, 17]. 

Typical solutions for structure selection problems are the 
forward regression orthogonal least squares algorithm 
(FROLS) which uses an important index, the Error 
Reduction Ratio (ERR) [11], and the simulation error 
minimization with pruning (SEMP) method, associated with 
the simulation error reduction ratio (SRR) [5]. Since both 
methods are based in Least Squares it’s possible to use the 
formulation present in equations (5,2) even as a 
generalization to MIMO case representation (Equation 3). 

The FROLS algorithm consists of the basic structure of 
the OLS (Orthogonal Least Squares) algorithm with the 
addition of a full search for the models that were not 
selected at each new step, with the intent of finding the best 
candidate regressor [20]. 

Considering the prediction error form used in 
Least Squares (Equation 5), the solution using the CGS 
method is to decompound the regressors matrix by 
Ψ=QA where Q is the new matrix regressor, A is the 
base for this space and Ψ = [ψ1, ψ2, . . . , ψnθ ]. 
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Where the components of the matrix and the 

composition of the   matrix are given by the Equations 7-10 
[1]. 
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This method gives parameters in an orthonormal basis 

space ĝ = Aθ̂, so the parameters in the original basis 

space are given by θ̂  = A−1ĝ, where ĝ is given by Equation 
11. 
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In order to select the best model structure which fits the 
data set, a criterion for regressor selection must, at each 
iteration, select the regressor with the best value. 

The ERR criteria provides an effective way of 
determining a group of significant regressors [20]. These 
significant terms are selected based on the value of ERRm, 
which is defined by Equation 12. 
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The FROLS method increments the ERR (Error 
Reduction Ratio) to evaluate the regressor significance for 
the model then builds a reduced regressors matrix and 
finally estimates the parameters for the model, for this an 
orthogonal matrix is built from the candidates matrix using 
GS (Equations 7-10). The process is illustrated in Algorithm 
4. 

 
 

 

Algorithm 1 FROLS 
 

 

1: Q = Ψ 
2: P hi = Ψ 
3: A = I 
4: for m=1:nθ do 
5: Calculation of the transformation base ĝ 
6: Calculation of the 
ERR 7: k = position of 
max ERR 8: Q(1) = qk 
9: P hi = Ψ without k-column 

10: s = 2 
11: aux = 1 
12: while s nθ do 
13: Calculation of Q matrix from GS using Phi 
14: Calculation of transformation base ĝ 
15: Calculation of ERR 

 
 

 
In SEMP method, initially, it is considered a matrix that 

has all the candidate regressors 
M  with dimension N x nθ, 

where N is the number of observations and nθ is the number 
of regressors. The matrix P = [ p1 ... pj ], with j ≤ nθ, represents 
the set of candidate regressors that are in the current model 
of iteration j, and is initialized as P={}. The matrix Q=[q1 ... 
qnθ - j] represents the set of candidate regressors that are 
outside of the current mode 

At each iteration, a term j of matrix Q is sequentially 
added to matrix P. For each term added to the model, the 
algorithm finds the parameters θ ∈ ԹP using an estimator. At 
the end of the j ≤ nθ iterations, the matrix P is a subset of 

M  with the best set of regressors chosen by the SRR 

criterion. 
In [5] the ERR criterion of the j regressor added to the 

current model is defined as: 
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where MSPE(Mi) is the mean square prediction error of 
the model at the jth iteration including the jth regressor. This 
criterion uses the one step ahead prediction error to 
calculate the influence of the jth regressor in the current 
model. 

The SRR (Equation ) criterion is defined in close 
analogy to the ERR. But, instead of using the MSPE, it uses 
the mean square simulation error (MSSE). The main idea is 
to simulate the current model and collect the error, instead 
of using the one step ahead prediction error. 
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The pruning procedure occurs after adding a regressor 
to the model. In this step, the regressors of the best chosen 
model are drawn sequentially one by one and the model 
without the current regressor is evaluated. If the model has 
a better SRR value than the complete model, then it 
becomes the best model. 

The SEMP method is summarized in Algorithm 2. Note 
that all the procedure is repeated for each of the qo 
equations that represent the dynamics of each system 
output. 

 
 

 

Algorithm 2 SEMP 
 

 

Initialization: σ, µ, ρ 
1: for NOutput = 1:qo do 
2: P = [ ] 
3: Q = ΨM 
4: for i = 1 : nθ do 
5: for j = 1: size of Q do 
6: P test = [P qj ] 
7: Calculation of θj using LS 
8: Calculation of Jj using SRR 
9: l = position of argmax J 

10: if Jl > Jlold   & Jlold Jl > ρ then 
11: P = [P ql] 
12: ql = [ ] 
13: else 
14: END 
15: for k = 1 : size of P do 
16: R = P without pk 
17: Calculation of θk using LS 
18: Calculation of Jpk using SRR 
19: m = position of argmax Jp 
20: if Jpm > Jlold then 
21: P = [P without pm] 
22: GOTO 16 
23: else 
24: GOTO 4 

 
 

Being iterative algorithms, both FROLS and SEMP need 
a stop criterion. The search is terminated at the M step 
when the ESR (see Equation 15) is less than a pre-
specified threshold ρ. 
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Quadruple tanks system 
In this section the quadruple tanks system will be 

explored. This kind of problem is oftentimes used in 
industrial facility as water treatment, bio-reactors, distillation 
process and in processes like cereal storage as rice, soy 
and corn. [35, 36, 37].  

Even with the quadruple tanks system being a simplified 
version of bigger systems, its complexity can be increased 
by adding more stages, and this characteristic allows for 
this kind of system to represent a large scale of industrial 
process, and your simplicity in mathematical modelling 
becomes attractive to study techniques in control and 
identification. 

In this paper the Quanser quadruple tanks system 
(Figure 1) is being used to investigate the efficiency of the 
previous cited algorithms, FROLS and SEMP, to detect 
structure and estimate parameters for a nonlinear black-box 
model. 

 
Fig. 1. Quanser’s quadruple tanks system. 

 

In the configuration shown in Figure 2 pump 1 pumps 
water to tanks 1 and 4, while pump 2 pumps water to tanks 
2 and 3. The water in the upper tanks flows to the lower 
tanks, and then flows into the water reservoir so that it is 
pumped back into the upper tanks, becoming an 
autonomous water re-circulation system. 

To build the mathematical model, Equation 16, it was 
assumed the pumps could be modelling by a gain, using 
mass balance to describe the water flowing through the 
tanks. This mathematical modelling can be expanded to any 
quantity as explored in [38]. 

It is important to note that, over time, some of the 
parameters in Table 1 begin to change, mainly due to the 
wear of the mechanical elements or due to the 
accumulation of residues in the holes and hoses. In this 
way, the modeling using the data provided by the 
manufacturer may present a divergent behavior in relation 
to the real system. 
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Fig. 2. Schematic diagram of the quadruple tanks process. 

 
Table 1. The parameters of the sensor 

Variable Definition 
k1 = 3 Pump 1 equivalent gain 
k2 = 3 Pump 2 equivalent gain 

D1 = 15.5cm Diameter Tank 1 
D2 = 15.5cm Diameter Tank 2 
D3 = 15.5cm Diameter Tank 3 
D4 = 15.5cm Diameter Tank 4 
d1 = 0.123cm Output diameter Tank 1 
d2 = 0.123cm Output diameter Tank 2 
d3 = 0.123cm Output diameter Tank 3 
d4 = 0.123cm Output diameter Tank 4 
g = 981 cm/s² Gravity acceleration 

 
Experimental Results 

It is a common practice to excite the system of interest 
and to use the resulting data to build the model, and the 
choice of an input signal used for the system’s activation is 
critical in the task of model building and parameter 
identification [14]. Thus, to identify the quadruple tanks 
system, a PRS (pseudo random signal) was used to excite 
each of the pumps that compose the system. 

Figure 3 shows the generated input signal used in 
estimation step. An important feature of the Quanser 
system is that it uses an amplifier to condition the signals 
applied to the pumps in the tanks system. This amplifier 
multiplies each of the signals in Figure 3 by 3 and then 
applies them to the pumps. 

For the identification of processes with discrete-time 
signals, the sample rate must be chosen prior to the 
measurement. If the chosen sample time is too small, then 
a badly conditioned system of equations results, as the 
difference equations for different values of sample become 
nearly linearly dependent. Hence, when decreasing the 
sample time, one suddenly witnesses a big increase in the 
parameter variances. However, choosing the sample time is 
rather uncritical as the range between too small and too 
large sample times is relatively broad [13]. In this 
experiment the used sample time is Ts = 0.1 seconds. 

With the data set that will be used in the identification 
process, we proceed to the stage of structure selection and 
parameter estimation. At this point, a candidate model is 
chosen, which has all the candidate regressors. For the 
experiment, a model with the following configuration was 
used: output delay ny=2, input delay nu = 2 and nonlinear 
degree l = 2. With this configuration, the NARX model of 
each output equation has a total of 91 candidate regressors 
(see Equation 4). 

This number of candidates regressors of the NARX 
model evidences the necessity of the structure selection 
step along with the parameter estimation. 
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Fig. 3. PRS input signal applied to each pump of the system in 
estimation step of identification processing. 

 
Equation 17 shows the model obtained by the FROLS 

method. Note that for each equation representing the 
dynamics of each output, only two regressors of the 91 
candidates are used to represent the system dynamics. 

(17) 

2
1 1 1

2 2 2
2

3 3 2

4 4 4

( ) = 0.994 ( 1) 0.008 ( 1)

( ) = 0.733 ( 1) 0.267 ( 2)

( ) = 0.994 ( 1) 0.006 ( 2)

( ) = 0.720 ( 1) 0.280 ( 2)

y k y k u k

y k y k y k

y k y k u k

y k y k y k

    
    
    
    

 

 

Equation 18 shows the model obtained by the SEMP 
method. Similar to FROLS, the SEMP method can select a 
set with the best regressors capable of representing the 
dynamics of the tanks system. In both cases, the threshold 
of the stop criteria is ρ = 10-4. 
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The generated signals in Figure 3, after being amplified, 
are applied to the pumps 1 and 2, as shown on the scheme 
of Figure 2, as well as in the models of Equations 17 and 
18, and generate the output signals shown in Figure 4. It is 
important to note that in this case the system is in an open 
loop. 

From Figure 4 it is possible to notice that the models are 
able to represent well the system dynamics from the 
estimation data. 

After the identification of the models obtained by the 
methods described above, a validation step is required. 
This step is important because it shows the generalization 
capacity the obtained models have. 

To validate the models, a data set different from the 
estimation step is used for a free simulation. Figure 5 shows 
the set of excitation signals applied in the real system and 
in the models. Note that, once again, a PRS signal was 
used to excite the system. 

 
Fig. 4. Response of each tank and its estimated models to the PRS 
signal of Figure 3. 
 

 
Fig. 5. PRS input signal applied to each pump of the system in 
validation step of identification processing. 

 
Figure 6 shows the system’s output after the application 

of the validation signal of Figure 5. 
 

 
Fig. 6. Response of each tank to PRS signal in Figure 5. 

 
To judge the quality of each of the obtained models, the 

root mean square error (RMSE) is used in each of the 
output vectors. The RMSE indicates the standard deviation 
of the residues or prediction errors and how these residues 
are spread. The RMSE is applied according to the following 
expression: 
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where the number of observations (or discrete points) is 
N=2500 and the error is calculated using the actual output y 
and the estimated output ŷ. The Table 2 shows the obtained 
results. 

 

Table 2. RMSE Values for each output 
Method\Output Tank 1 Tank 2 Tank 3 Tank 4 

FROLS 0.0343 0.0946 0.0425 0.0885 
SEMP 0.0342 0.0923 0.0408 0.0867 

 

According to Table 2, it is possible to observe that both 
methods have low error values. As expected, the SEMP 
method has lower error values than FROLS, however, it has 
a significantly higher computational cost. 

 
Conclusion 

The analysis of the results obtained in the MIMO 
quadruple tank system suggests that such methods of 
identification of nonlinear systems are quite efficient, 
especially regarding the selection of NARX models. The 
identified models have low error values. 

Although NARX models are quite simple, such models 
show a very high growth in the number of candidate 
regressors when increasing the degree of the system and 
the degree of non-linearity, which consequently causes an 
increase in the computational cost of identification methods. 

The practical experiment presented in this paper 
suggests that application of MIMO nonlinear systems 
identification techniques should always be considered. If the 
system presents nonlinearity behaviour then linear models 
will have lower quality representing the dynamic of the 
system, especially in MIMO cases. 
 

Acknowledgments 
This work was conducted during a scholarship supported by 
the Cooperation Program CAPES at the University of Rio 
Grande do Norte 
 
Authors: Prof. Ícaro B. Q. Araújo, Yan L. S. Lúcio, Computer 
Institute, Federal University of Alagoas Av. Lourival de Melo Mota, 
Bloco 12, Tabuleiro do Martins 57072-970, Maceió, AL, Brazil, 
email:icaro@ic.ufal.br, Gabriel B. Cavalcante, De- partament of 
Automation and Systems Federal University of Santa Catarina 
Campus Universitário Reitor João David Fer- reira Lima - R. Delfino 
Conti, s/n - Trindade, Florianópolis - SC, 88040-900 M. Sc. Ícaro B. 
Q. Araújo, Fábio M. U. Araújo, Department of Computer 
Engineering and Automation, Fed- eral University of Rio Grande do 
Norte - Technology Center, UFRN Campus Universitário Lagoa 
Nova, 59078-970, Natal, RN, BRAZIL. 
 

REFERENCES 
 [1]  L. Ljung,  System identification: theory for the user.  Prentice-

hall, 1987. 
[2]  R. Pintelon and J. Schoukens,  System Identification: A 

Frequency Domain Approach.  Wiley, 2004. 
[3]  I. Leontaritis and S. A. Billings, “Input-output parametric models 

for non-linear systems part i: deterministic non-linear systems,”  
International journal of control, vol. 41, no. 2, pp. 303–328, 
1985. 

[4]  W.-X. Zhao and H.-F. Chen, “Identification of wiener, 
hammerstein, and narx systems as markov chains with 
improved estimates for their nonlinearities,”  Systems & Control 
Letters, vol. 61, pp. 1175–1186, 12 2012. 

[5]  L. Piroddi and W. Spinelli, “An identification algorithm for 
polynomial narx models based on simulation error 
minimization,”  International Journal of Control, vol. 76, no. 17, 
pp. 1767–1781, 2003. 

[6]  I. Lind and L. Ljung, “Regressor and structure selection in narx 
models using a structured anova approach,”  Automatica, vol. 
44, no. 2, pp. 383–395, 2008. 

[7]  T. Orlowska-Kowalska and C. T. Kowalski, “Neural network 
application for flux and speed estimation in the sensorless 
induction motor drive,” in  ISIE ’97 Proceeding of the IEEE 
International Symposium on Industrial Electronics, pp. 1253–
1258 vol.3, July 1997. 

[8]  A. Ghadirian and M. Zekri, “Mimo nonlinear dynamic systems 
identification using fully recurrent wavelet neural network,” in  
The 2nd International Conference on Control, Instrumentation 
and Automation, pp. 1113–1118, Dec 2011. 

[9]  J. S. R. Jang, “Anfis: adaptive-network-based fuzzy inference 
system,”  IEEE Transactions on Systems, Man, and 
Cybernetics, vol. 23, pp. 665–685, May 1993. 

[10]  N. Mathur, I. Glesk, and A. Buis, “Comparison of adaptive 
neuro-fuzzy inference system (anfis) and gaussian processes 
for machine learning (gpml) algorithms for the prediction of skin 
temperature in lower limb prostheses,”  Medical Engineering & 
Physics, vol. 38, no. 10, pp. 1083 – 1089, 2016. 

[11]  S. A. Billings, M. J. Korenberg, and S. Chen, “Identification of 
non-linear output-affine systems using an orthogonal least-
squares algorithm,”  International Journal of Systems Science, 
vol. 19, pp. 1559–1568, Apr 1988. 

[12]  S. A. Billings, S. Chen, and M. J. Korenberg, “Identification of 
mimo non-linear systems using a forward-regression 
orthogonal estimator,”  International Journal of Control, vol. 49, 
no. 6, pp. 2157–2189, 1989. 

[13]  R. Isermann and M. Münchhof,  Identification of Dynamic 
Systems: An Introduction with Applications.  Advanced 
Textbooks in Control and Signal Processing Series, Springer 
Berlin Heidelberg, 2010. 

[14]  W. Jakowluk, “Design of an optimal excitation signal for 
identification of inertial systems in time domain,”  PrzeglÄ…d 
Elektrotechniczny, vol. R. 85, nr 6, pp. 125–129, 2009. 

[15]  A. Falsone, L. Piroddi, and M. Prandini, “A randomized 
algorithm for nonlinear model structure selection,”  Automatica, 
vol. 60, pp. 227 – 238, 2015. 

[16]  F. Bianchi, A. Falsone, M. Prandini, and L. Piroddi, “A 
randomised approach for narx model identification based on a 
multivariate bernoulli distribution,”  International Journal of 
Systems Science, vol. 48, no. 6, pp. 1203–1216, 2017. 

[17]  M. Avellina, A. Brankovic, and L. Piroddi, “Distributed 
randomized model structure selection for narx models,”  
International Journal of Adaptive Control and Signal 
Processing, vol. 31, no. 12, pp. 1853–1870, 2017. 

[18]  M. KORENBERG, S. Billings, Y. Liu, and P. McIlroy, 
“Orthogonal parameter estimation algorithm for non-linear 
stochastic systems,”  International Journal of Control, vol. 48, 
no. 1, pp. 193–210, 1988. 

[19]  S. Chen and S. A. Billings, “Representations of non-linear 
systems: the narmax model,”  International Journal of Control, 
vol. 49, no. 3, pp. 1013–1032, 1989. 

[20]  S. A. Billings,  Nonlinear system identification: NARMAX 
methods in the time, frequency, and spatio-temporal domains.  
John Wiley & Sons, 2013. 

[21]  N. Chiras, C. Evans, and D. Rees, “Nonlinear gas turbine 
modeling using narmax structures,”  IEEE Transactions on 
Instrumentation and Measurement, vol. 50, no. 4, pp. 893–898, 
2001. 

[22]  E. H. Fung, Y. Wong, H. Ho, and M. P. Mignolet, “Modelling 
and prediction of machining errors using armax and narmax 
structures,”  Applied Mathematical Modelling, vol. 27, no. 8, pp. 
611–627, 2003. 

[23]  S. K. Pradhan and B. Subudhi, “Narmax modeling of a two-link 
flexible robot,” in  2011 Annual IEEE India Conference, pp. 1–5, 
IEEE, 2011. 

[24]  R. Salat, M. Awtoniuk, and K. KORPYSZ, “Black-box system 
identification by means of support vector regression and 
imperialist competitive algorithm,”  Przeglkad 
Elektrotechniczny, vol. 89, pp. 223–226, 09 2013. 

[25]  Y. Cheng, L. Wang, and J. Hu, “A two-step method for 
nonlinear polynomial model identification based on evolutionary 
optimization,” in  2009 World Congress on Nature Biologically 
Inspired Computing (NaBIC), pp. 613–618, Dec 2009. 

[26]  L. A. Aguirre and S. Billings, “Dynamical effects of 
overparametrization in nonlinear models,”  Physica D: 
Nonlinear Phenomena, vol. 80, no. 1, pp. 26 – 40, 1995. 

[27]  L. A. Aguirre and C. R. F. Jacome, “Cluster analysis of narmax 
models for signal-dependent systems,”  IEE Proceedings - 
Control Theory and Applications, vol. 145, pp. 409–414, Jul 
1998. 

[28]  W. Luo and S. Billings, “Adaptive model selection and 
estimation for nonlinear systems using a sliding data window,”  
Signal Processing, vol. 46, no. 2, pp. 179 – 202, 1995. 



72                                                                              PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 6/2019 

[29]  L. A. Aguirre, U. S. Freitas, C. Letellier, and J. Maquet, 
“Structure-selection techniques applied to continuous-time 
nonlinear models,”  Physica D: Nonlinear Phenomena, vol. 158, 
no. 1, pp. 1 – 18, 2001. 

[30]  M. Farina and L. Piroddi, “An iterative algorithm for simulation 
error based identification of polynomial inputâ€“output models 
using multi-step prediction,”  International Journal of Control, 
vol. 83, no. 7, pp. 1442–1456, 2010. 

[31]  M. Hirch and L. del Re, “Iterative identification of polynomial 
narx models for complex multi-input systems,”  IFAC 
Proceedings Volumes, vol. 43, no. 14, pp. 445 – 450, 2010.  
8th IFAC Symposium on Nonlinear Control Systems. 

[32]  M. Bonin, V. Seghezza, and L. Piroddi, “Lasso-enhanced 
simulation error minimization method for narx model selection,” 
in  Proceedings of the 2010 American Control Conference, pp. 
4522–4527, June 2010. 

[33]  S. A. M. Martins, E. G. Nepomuceno, and M. F. S. Barroso, 
“Improved structure detection for polynomial narx models using 
a multiobjective error reduction ratio,”  Journal of Control, 
Automation and Electrical Systems, vol. 24, pp. 764–772, Dec 
2013. 

[34]  A. M. Barbosa, R. H. C. Takahashi, and L. A. Aguirre, 
“Equivalence of non-linear model structures based on pareto 
uncertainty,”  IET Control Theory Applications, vol. 9, no. 16, 
pp. 2423–2429, 2015. 

[35]  W. Fuchs, H. Binder, G. Mavrias, and R. Braun, “Anaerobic 
treatment of wastewater with high organic content using a 
stirred tank reactor coupled with a membrane filtration unit,”  
Water Research, vol. 37, no. 4, pp. 902–908, 2003. 

[36]  A. Numsomran, V. Tipsuwanporn, and K. Tirasesth, “Modeling 
of the modified quadruple-tank process,” in  2008 SICE Annual 
Conference, pp. 818–823, IEEE, 2008. 

[37]  S. Xie, Y. Xie, W. Gui, and C. Yang, “Weighted-coupling cstr 
modeling and model predictive control with parameter adaptive 
correction for the goethite process,”  Journal of Process 
Control, vol. 68, pp. 254–267, 2018. 

[38]  A. Maxim, C. Ionescu, and R. De Keyser, “Modelling and 
identification of a coupled sextuple water tank system,” in  
Automation, Quality and Testing, Robotics (AQTR), 2016 IEEE 
International Conference on, pp. 1–6, IEEE, 2016. 

 

 


