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Modeling and Control of multimachines System Using Fuzzy 
Logic 

 
 

Abstract. This work is devoted to modeling and vector control by fuzzy logic of a multimachines system connected in series. A six-phase 
asynchronous machine connected in series with a three-phase asynchronous machine fed by a single inverter and controlled independently. Thanks 
to the powerful means of calculation, which made possible the control of such a system and this allows its integration in applications where the 
constraints of space and weight require a particular attention 
 
Streszczenie. W artykule opisano zastosowanie układu fuzzy logic do sterowania wielomaszynowym systemem sześciofazowej maszyny 
asynchronicznej I trójfazowej maszyny asynchronicznej polączonych szeregowo.Do sterowania każdej z maszyn użyto niezeleżnego przekształtnika. 
(Modelowanie i sterowanie systemem wielomaszgnowym z wykorzystaniem fuzzy logic). 
 
Keywords:  Multimachines system (MSCS), Vector control, Hexa-phase inverter, Fuzzy control (FLC). 
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Introduction 

AC machines, induction in particular have dominated the 
field of electric machines. Recently, researchers are 
interested in machines with a number of phases greater 
than three. These machines are often called «multiphase 
machines». This type of machine have large losses and to 
exploit these, it is possible to connect in series several 
machines supplied by a single static power converter with 
each machine in the group have an independent speed 
control. However, the use of multiphase converters 
associated with polyphase machines, generates additional 
degrees of freedom. Thanks to these, several polyphase 
machines can be connected in series in an appropriate 
transposition phases [1], [4]. 

For some applications, series connection of multi-
phases induction machines can be very interesting.  

The global system is defined as the domination of a 
series connected multi-machines mon-converter system 
(MSCS). This system consists of several machines 
connected in series in an appropriate transposition of 
phases. The whole system is supplied by a single converter 
via the first machine. The control of each machine must be 
independent of others [5], [7].  

In [17], the author uses a classical PI controller to 
perform a speed control of series connected machines. 
However, PI controller parameters are highly affected by 
the system parameters, a temperature rise can cause a 
degradation of the control quality. 

Seen from this major drawback, our contribution is to 
change conventional controllers “PI” with fuzzy logic 
controllers and test its robustness. 
 
Modeling of Multi-machine System 

The drive system is composed by two induction 
machines. The first one is a symmetrical six-phase 
induction motor M(1) which its windings are series 
connected with that of a second three-phase induction 
motor M(2). The two motors are supplied by a single power 
converter which is a six-phase Voltage Source Inverter 
(VSI).  

Fig. 1 presents the connecting and suppling schematic 
of the two motors and the converter [7], [9]. The six-phase 
machine has the spacial displacement between any two 
consecutive stator phases equal to 60° (i.e. α=2π/6). 

Only phases 1, 3 and 5 are used by the second machine 
M(2), this phases are electrically displaced to each other by 
and angle of 2π/3.  
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Fig. 1. Connection diagram for series connection of a six-phase 
and a three-phase machine 
 

We note that a simple series connection of stator 
windings fails to ensure the desired performances. A 
solution is adopted to overcome this constraint consists of 
using an adequate stator windings transposition [10],   [11]. 
This transposition resides of connecting in one point each 
two (electrically displaced to each other by π) of six-phase 
windings and connect them in series with the windings of 
the M(1) [12], [14].  

In this way, currents pass through the six-phase 
windings going to neutralize at the connecting point. And in 
the same context, the current passing through the one 
winding of M(2) will be the half when passing through the 
windings of M(1). This will generate in air-gap of the M(1) a 
two (equal in magnitude and opposed in phase) Magneto-
Motive Force (MMF). Therefore, a natural decoupling of the 
two motors will be possible by adopting the connection 
diagram shown in Fig. 1. 

According to Fig. 1, the stator and rotor voltages of the 
two machines can be written as follows [1], [4]: 
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The relationship between the current source and the 

stator currents of each machine are given as follows: 
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The electrical equations: 
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Knowing that k=1 for the M(1) and k=2 for the M(2) 
with:  
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Modeling of Multimachines System into three 
subspaces(,), (x,y), (o+,o-): 

The original six dimensional systems of the MSCS can 
be decomposed into three orthogonal subspaces, (, ), (x, 
y) and (o+, o-) [1], using the following transformation 
Xo=[T6()]-1.Xabc and Xdqo=[T6()]-1Xo 

Where: X represents stator currents, stator flux, stator 
voltages in MSCS. 
The matrix [T6()] is given by: 
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where: 
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Application of the transformations matrix (6) and (7) in 
conjunction with the first row of (4) lead to the decoupled 
model of the six-phase two-motor drive system. Source 
voltage equations that include equations of the two stator 
windings connected in series can be given as: 
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Rotor voltage equations of six-phase machine and three-
phase machine are:  
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with: 
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Application of (6) in conjunction with (1) yields: 
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Torque equations of the two machines are: 
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As can be seen to equations (10)-(14) and (18), that 
flux/torque producing stator currents of the six-phase 
machine are the source (α, β) current components, while 
the flux/torque producing stator currents of the three-phase 
machine are the source (x, y) current components. This 
indicates the possibility of independent vector control of two 
machines. It therefore follows that independent vector 
control of the two machines can be realized with a single 
six-phase inverter. 

Vector Control of the two-Motor Drive 
With the transformation (8), the components of the plane 

(α, β) to equations (10)-(14) can be expressed in the (d, q) 
plane. The two series-connected machines can be 
controlled independently using rotor-flux oriented control 
principles (Fig. 2). 
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Fig. 2. Indirect rotor flux oriented controller for the two-motor drive 

Model Simplifies of the Multimachines System 
If the plane (d, q) is perfectly directed, we suppose that 

the component rq,k = 0. This simplifies the model of the 
MSCS as follows: 
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By introducing the angular speeds of sliding, the 

obtained equation is the following shape: 
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With this condition, the flux and torques for MSCS as: 

(22)  















11
1

11
1

1
1

1
1 1









sr
r

em

s
r

r

i
L

Mp
T

i
pT

M

                

                    

(23)  















syr
r

em

sx
r

r

i
L

Mp
T

i
pT

M

2
2

22
2

2

2
2

2

1
2








                

According to 22 and 23, six-phase machine’s flux/torque 
are controllable by inverter (α, β) axis current components, 
while flux and torque of the three-phase machine can be 
controlled using inverter (x, y) current components. 
Fuzzy Logic Controller 

Fuzzy logic controller (FLC) is usually used in induction 
machine drives. Due to its simplicity, (no mathematical 
model or speed closed-loop is required), the FLC method 
became very useful in induction machine drives used in 
speed control systems. 

The membership function (MF) of the associated input 
and output variables is generally predefined on a common 
universe of discourse. For the successful design of FLC’s 
proper selection of input and output scaling factors (gains) 
or tuning of the other controller parameters are crucial jobs, 
which in many cases are done through trial and error to 
achieve the best possible control performance [15]. 

The fuzzy logic control is based on these four elements: 
a bases rule, an inference mechanism, a fuzzification 
interface and a defuzzification interface.  

The interface used in this work is Mamdani’s procedure 
based on max-min decision. For the defuzzification, the 
Center of Area (COA) method is employed. 

The structure of FLC is shown in Fig. 3. For our study, 
the input of the fuzzy controller is the error of speed E, as 
well as its variation ∆E, the output of the regulator will be 
the Torque’s increment ∆Tem.  

It is enough to integrate him to have the value of the 
electromagnetic couple of command Tem. 

The fuzzy control scalar used in the speed control will 
have 49 IF-THEN rules. Fig. 4 (a), (b) and (c) shows 
membership functions of input variables E and ∆E 
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respectively and output variable, which are with  in 
conventional triangular shapes. Each membership is 
divided into 7 fuzzy. 
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Fig. 3. Block diagram of fuzzy controller 
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Fig. 4. Membership functions of input/output variables  

a) input speed error; b) input change speed error; c) output   
 

The membership is divided into seven fuzzy sets: 
NH: Negative High, PS: Positive Small, ZE: Zero 
NM: Negative Medium, PM: Positive Medium 
NS: Negative Small, PH: Positive High 

The rule-based table for output variable was shown in 
table 1, it was consist of 49 linguistic rules and give the 
change of the output of fuzzy logic controller in terms of two 
inputs E and ∆E 

 
Table 1. Shows the rule base for controlling the speed 

   EΩ 

∆EΩ 
NH NM NS ZE PS PM PH 

NH NH NH NH NH NM NS ZE 

NM NH NH NH NM NS ZE PS 

NS NH NH NM NS ZE PS PM 

ZE NH NM NS ZE PS PM PH 

PS NM NS ZE PS PM PH PH 

PM NS ZE PS PM PH PH PH 

PH ZE PS PM PH PH PH PH 

 
In Table 1, some of the rules are interpreted: 

If E is PM and ∆E is PM Then ∆Tem is PH. Here, both the 
speed error and the change error are positive medium. 
Therefore, we need positive high ∆Tem to achieve a fast 
response. The same steps used for the conception of the 
speed controller will be repeated for the currents controller, 
only we have: 

Input error E : instead of being equal to E = * - , it will be 
equal in dsds iiE  *  for the first fuzzy controller of current ids 

and qsqs iiE  *  for the second fuzzy controller of current iqs ; 

The output of the fuzzy controller is Vds or the ids current 
controller and Vqs or the controller of the current iqs current. 

So that the internal loop is faster than the external one 
(condition of subjection). We represent the input/output 
variables by membership function, as show in Fig. 5, each 
one divided into 3 fuzzy. The rule-based table for output 
variable is presented in table 2, it consist of 9 linguistic rules 
and gives the change of the output of fuzzy logic controller 
in terms of two inputs E and ∆E for each current’s controller 
(ids2 and iqs2). 

Each membership function is also assigned with three 
fuzzy sets: P (positive), N (negative) and ZE (zero). 

 

 

(a) 

(b) 

(c)  
 

Fig. 5. Membership functions of input/output variables 
a) input current error; b) input change speed error; c) output 

 

Table2.  Shows the rule base for controlling the currents 
        Ei 

∆Ei
N ZE P 

N N N ZE 
ZE N ZE P 
P ZE P P 

 
Simulation Results  

The simulation results of vector speed control of the two 
series connected machines in (MSCS) with the 
implementing of the fuzzy controller is developed in the 
MATLAB. The decoupling and independent control of the 
two machines is demonstrated 

The first test consists in presentation of the global 
system simulation results: two series-connected machine 
with their drive: The three-phase induction machine is 
accelerating from standstill to reference speed N2 = 
100rad/s, a load torque of 4N.m is applied between time t 
=1s and t = 2.5s, where the six-phase induction machine is 
started at t =1.5s after the acceleration transient time 
expired the speed settled at N1 = 50rad/s a torque of 39N.m 
is applied to it at the time t = 2s. Fig. 6 shows the speeds, 
torques and stator currents. It is clear that the dynamic 
performances are good and we can notice that the I.M(2)’s  
electromagnetic torque and speed are not affected by the 
starting operation of the I.M(1). 

In the Fig. 7 : The six-phase induction machine turn at a 
constant speed equal to 50rad/s, a load torque of 39N.m is 
applied at t =1s while the three-phase motor is started at t = 
1.5s to settle at speed of 100rad/s at the end of acceleration 
transient time. We notice that, the speed and torque of the 
I.M(1) are not affected by the acceleration period of the 
I.M(2). 

Figs. 8 and 9 shows the performances when the speed 
of I.M(1) is changed from + 50rad/s to -50rad/s at t =1.5s 
while the other I.M(2) direction is kept unchanged and vice 
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versa, the direction of the I.M(2) is changed from +100 to -
100rad/s while that of I.M(1) is kept unchanged. Simulation 
results show that the performances (the electro-mechanical 
quantities) of both machines are unaffected and decoupled 
control is preserved. 
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Fig .6. Performance of indirect vector controlled system: 
Acceleration of I.M(2) from 0 to 100 rad/s using fuzzy controller 
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Fig .7. Performance of indirect vector controlled system: 
Acceleration of I.M(1) from 0 to 50 rpm using fuzzy controller 
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Fig .8. Performance of indirect vector controlled system: The 
I.M(1) reverses from +50 to -50 rad/s using fuzzy controller. 
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Fig .9. Performance of indirect vector controlled system: The 
I.M(2) reverses from +100 to -100 rad/s using fuzzy controller 
 

The second test consists of the robustness test of the 
system under fuzzy logic controller. After changing (adding) 
100% of the moment inertia J, we present in Fig. 10 the 
speed N and the enlargement of the speed during the 
transitory regime. According to this figure, the result shows 
that the fuzzy logic controller present a very big robustness. 
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Fig .10. Test of robustness of the fuzzy regulator with applied load 
torque  and the change of rotation direction  during a   
variation of the moment of inertia (J = 2Jn) for M(1) and (J2=2Jn2) for 
M (2). 
 
Table 3. The values parameters for the Six-phase induction motor. 

Rated power: Pn = 5.5kw 
Nominal currant: In = 6A 
Stator resistance: Rs = 2.3  
Rotor resistance: Rr = 3  
Stator inductance: Ls = 0.203H 
Rotor inductance: Lr = 0.203H 

Mutual inductance: Lm =0.2H 
 Rated phase stator voltage: Vn = 220v 

Pole pair number.: P = 1 
Rotor speed: N = 1000 tr/min 

Friction coefficient: Kf = 0.006 Nms/rad 
Moment of inertia : J = 0.06Kg.m² 

 

Table 4.The values parameters for the Three-phase induction 
motor. 

Puissance nominale: Pn2 = 1 kw 
Stator resistance: Rs2 = 4.67  
Rotor resistance: Rr2 = 8  
Stator inductance: Ls2 = 0.374H 
Rotor inductance: Lr2 = 0.374H 

Mutual inductance: Lm2 =0.2433H 
Rated phase stator voltage: Vn2 = 220v 

Pole pair number.: P2 = 3 
Rotor speed: N2 = 2830 tr/min 

Friction coefficient: Kf 2 = 0.001 N.m.s/rd 
Moment of inertia : J2 = 0.023Kg.m² 

 

Conclusion 
With the aim of improving the behavior of a MSCS the 

object of the study presented in this paper is the application 
of a fuzzy controller, with its main modules such as 
Fuzzification, Rules, Inferences, and Deffuzification. The 

results of simulation showed a good dynamic performances 
of the two machines and a very big robustness towards a 
100 % change in inertia (J = 2Jn). For a further work in this 
subject, we propose: a faults diagnostic of the system. 
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