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Criterion for transient behaviour in a nonlinear Duffing oscillator 
 
 

Abstract. The paper proposes a criterion for determining transient behaviour in a nonlinear Duffing oscillator. For this purpose studies of specific 
attractors typical of the system have been conducted. Exactly defined deviation value of ∆ with respect to the mean value of the surface areas 
bounded by the successive trajectory cycles has been assumed as the termination of the transient behaviour. 
 
Streszczenie. W pracy zaproponowano kryterium wyznaczania czasu trwania procesu przejściowego w nieliniowym oscylatorze Duffinga. W tym 
celu badano specyficzne atraktory charakteryzujące ten układ. Za kryterium końca procesu przejściowego przyjęto ściśle zdefiniowaną wartość 
odchyłki ∆ od wartości średniej pól powierzchni ograniczonych kolejnymi cyklami trajektorii. Kryterium wyznaczania czasu trwania procesu 
przejściowego w nieliniowym oscylatorze Duffinga 
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Introduction 
From a practical point of view, to determine the duration 

of transient behavior in nonlinear physical systems 
constitutes both an important and interesting problem. 
Transient behaviour occurs both in mechanical systems as 
well as electrical and electronic ones. In stable linear 
systems, it is assumed that the transient process fades after 
a time equal to five time constants. For an autonomous 
system analysis a more exact assessment of the duration of 
transients was presented in [1]. It used a Lyapunov function 
to define time ttr, in which the trajectory of an autonomous 
system, starting from the initial state, reaches a specific 
area including the origin of the coordinate system. In that 
case, ttr≤-ϑlnV[x(ttr)]/V[x(0)], where V[x] is a Lyapunov 
function, while ϑ is the largest eigenvalue of a matrix 

determined from dependency
.

max( ( ) / ( ))
x

V x V x   . 

The analysis of transient behaviour in nonlinear systems 
is more complicated as the superposition principle cannot 
be used here and, as a result, transient and steady 
components cannot be separated. In harmonic 
enforcement, nonlinear systems are characterized by the 
occurrence of a non-sinusoidal response. In many cases, 
they are systems with chaotic dynamics in which transient 
chaos are distinguished [2, 11]. The duration of the 
transient behaviour depends, among others, on the choice 
of initial conditions and the values of the system 
parameters. A great number of physical phenomena are 
modeled by basic differential equations. For example, 
vibrations in electrical, electronic and mechanical systems 
can be analyzed using the Duffing equation [3, 4]. The 
system of three Lorenz equations has been used to 
characterize the convective movement occurring, for 
instance, in the Earth's atmosphere [5, 6]. Electronic 
oscillators with non-linear damping are described by Van 
der Pol's equation [7, 8]. 

Below, we present a brief overview of the works on 
transient behavior analysis of nonlinear systems. Paper [8] 
presents an analysis of control systems dynamics described 
by the nonlinear Duffing and Van der Pol equations with 
chaotic enforcement. The authors showed that the 
proposed controller was found to be highly efficient in 
system tracking and had swift response time. 

Considerable attention was paid to the analysis of 
transient behaviour in systems described by the Lorenz 
equation. For example, paper [9] provides a method called 
partial control that makes it possible to keep the analyzed 
system in transients and prevent the transient trajectories 
from escaping to the external attractor. On the other hand, 

paper [10] presents an analysis of transients dependent on 
changes in the initial conditions in the Lorenz model of 
atmospheric phenomena. 

In paper [11] the authors described long chaotic 
transients in complex networks of pulse-coupled oscillators. 
It was shown that small changes in the structure of a 
complex system have a decisive influence on its dynamics. 

A practical application of the assessment of the effect of 
transients on the operation of a physical system is 
presented in [12]. The paper analyzes specific transient 
basins in a gearbox where unwanted rattling occurs during 
chaotic vibrations. 

In this work, which analyzes a non-linear system, we are 
considering a stable system with periodic dynamics. We 
investigate the transient trajectories with the set initial 
conditions and assumed parameters which are convergent 
to a repetitive loop (Fig. 2). The time interval in which this 
specific state of the system occurs is defined as transient 
behaviour (transients) and denoted by ttr. 

As mentioned above, an example of nonlinear dynamics 
are physical systems described by the Duffing equation. 
A general form of this equation is as follows: 

(1) d2z/dt2 + a1dz/dt + a2z +a3z
3 = b1cos(b2t +b3) 

where: a1, a2,a3 are the parameters of the analyzed system, 
while b1, b2, b3are the driving force parameters. 

In mechanical systems, coefficients a2, a3 characterize 
a nonlinear spring, while in electric systems they describe 
approximation of the magnetization curve. In equation (1) 
z(t) stands for displacement and ż(t) for speed. Coefficient 
a1 is related to the damping phenomenon in the considered 
system. After the transformation of equation (1) into a 
system of two equations, it is usually analyzed on the phase 

plane.  
Fig. 1. Attractor reflecting periodic dynamics without marked 
transient trajectory and initial conditions [14]. 
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It can be stated that in the periodic dynamics, the 
trajectories are found in a repetitive loop (Fig. 2). Very 
often, these trajectories are presented in the scientific 
literature without indicating the assumed initial conditions 
and the resulting transient trajectory [13, 14] (Fig. 1). 

Considering the above mentioned remarks, the main 
goal of this work is to develop a criterion to define the 
duration of the transient behaviour (time ttr). For this 
purpose a model of Duffing oscillator is used. 

The proposed criterion for determining the transient 
behaviour 

Equation (1) can be represented by the system of two 
first order equations. To this end, assuming z(t)= x1(t), and 
ż(t) = x2(t), we obtain: 
  ẋ1 = x2 
(2) ẋ2 = -a1x2 –a2x1 – a3x1

3 + b1cos(b2t+b3) 

In our further studies state variables x1(t) and x2(t), are 
assumed to be dimensionless. For b2 =1, we obtain a 
driving force period of 2π. Adopting the above assumption 
and assuming a1=0.5, we obtain an attractor reflecting the 
periodic oscillations in the system (Fig. 2), whereas 
waveform evolutions are illustrated in Fig. 3. 

 

Fig. 2. Attractor reflecting periodic dynamics of the system 
described by equation (2) with transient trajectory. x1(0)=0, x2(0)=0, 
a1=0.5, a2=0.27, a3=1.2, b1=1, b2=1, b3=0.5. 

The lines shown in Fig. 2 describe the transient 
trajectory that is convergent to the repetitive loop that 
reflects periodic dynamics. As mentioned above, the basic 
goal of this paper is to develop a criterion that would make it 
possible to define the time interval in which the transient 
behavior ttr occurs in the system. In our considerations zero 
initial conditions x1(0)=0 and x2(0)=0 have been taken into 
account. They correspond to point p0(0,0) on the phase 
plane (Fig. 2) and time ti. The end of one complete cycle in 
transients is represented by point p15(x1=0, x2=1.273). 

The first complete cycle time is 5.48s<2π. In the state of 
periodic dynamics, the phase trajectory enters the repetitive 
loop and period T (full cycle time) for the adopted parameter 
b2=1 equals 2π. The individual points of the trajectory are 
the vertices of the triangles marked in Fig. 2 as p1, p2, p3, 
…, N, where N-1 is the last triangle of the full first cycle in 
the analysis of the time interval. The equations (2) are 
solved by one of the numerical methods assuming the 
integration step h ensuring the stability of the method [15]. 
The sum of the areas of the triangles for one full cycle, eg 
from point p1(0.074, 0.294) to point p15(0, 1.273) is denoted 

as Pc1=
1

11
( )

N

nn
S



 , N=15. For the second cycle from point 

p15(0, 1.273) the sum is denoted by Pc2= 21
( )

M

nn
S

 , where 

N-1 and M = 16 are the number of triangle areas in the first 
and second cycle, respectively. Generally: 
(3)  Pci = (

1

L

nn
S

 )i 

where i = 1,2,…,K is a consecutive cycle and L the number 
of triangles in a given cycle (Fig. 2). 

 

 

Fig. 3. Waveform evolutions of the Duffing oscillator (a1=0.5),  
a) x1(t), b) x2(t) 

In the transient behaviour Pci values differ significantly 
from average PK value (Fig. 4). In the time ttr the trajectory 
enters in a repetitive loop (Fig. 2). We assume that time ttr 
after which the transient trajectory enters periodic dynamics 
with the assumed difference ∆ from the average value 
computed from the end of the time of the analysis, defines 
the end of the transient behaviour in the system (Fig. 4). 

If we assume ‘i’ to denote the subsequent cycle number 
of the integration time (2), then the average value 
calculated from the end of the time of analysis equals to: 

(5)   1
...

1
K K i

i

C C C
K

P P P
P

K i


  


 
 

Therefore, the periodic dynamics occurs for: 

(6)     i i

i

C K

K

P P

P



  

where i is the subsequent cycle from ti=0. In this paper 
Δ=5·10-3 is assumed. 

Taking into account the above considerations, we 
present the definition of the transient behaviour in the 
systems described by the Duffing equation. 

Definition. In the system described by equations 
ẋ=f(x(t),u(t),t) where x(t)Rn and u(t)Rm, the transient 
behavior ttr is called time t, in which the transient trajectory 

enter attractor loop with condition  i i

i

C K

K

P P

P



 , where i is 

the subsequent cycle starting from ti, and Δ is a sufficiently 
small number. 
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The algorithm for determining the transient behaviour in 
these systems and its procedure is given below: 
Step 1: Specify the integration step h of the system of 

nonlinear equations, perform the approximation of the 
surface inside the trajectory using the sum of the area of 
the triangles (Fig. 2). 

Step 2: Calculate the mean value of the areas of the 
subsequent cycles, computing the mean value from the 
end of the integration time te of the equations according to 
formula (5). 

Step 3: Determine the duration of the transient behaviour 
from dependence (6). 

Step 4:Create charts to illustrate the Pci values (3) and 
average values of successive cycles of the attractor with 
time ttr. 

 
Fig. 4. Plot of Pci values (3) and average values of successive 
cycles of the attractor with time ttr (a1=0.5, a2=0.27, a3=1.2, b1=1.0, 
b2=1.0, b3=0.5). 
Study of the impact of system parameters on the 
transient behaviour 

The transient behaviour of the Duffing oscillator (1) 
depends on the parameters that occur both on the left and 
right side of the equation. Parameters a1, a2, a3 are 
characterized by: damping a1, nonlinear spring a2, a3, i.e. 
own parameters of the system. The right side of the 
equation are the driving force parameters. The following 
values have been assumed for the study of system 
behavior: 
  a1 = 0.045÷0.5, b1 = 0.5, 
(7)  a2 = 0.27,          b2 = 1, 
  a3 = 1.2,            b3  = 0.5, 
  x1(0)= 0, x2(0)= 0. 

The values of the coefficients have been chosen from 
the literature review on the topic [3]. Parameter a1 was 
changed within the range of 0.045 to 0.5. Fig. 5 shows the 
dependence of time ttr on value a1.The other parameters 
were assumed to be constant. Time ttr increases with 
decreasing a1 values, which is consistent with the principle 
of the dependence of the transients on the damping values 
in the system. 

 
Fig. 5. Dependence of transient behaviour (time ttr), on the value of 
a1. 

Examples of attractors and determination of transients ttr 
in the system are shown in Figs. 6, 7, 8 and 9. 

 

Fig. 6. Attractor illustrating the periodic dynamics of the system 
described by (2) for a long duration of transients: a1=0.07 
and the remaining parameters as given in (7). 

 

Fig. 7. Determination of time ttr with a small value a1=0.07. 

 

Fig. 8. Attractor reflecting the periodic dynamics of the system with 
a higher damping value: a1=0.2 and the remaining parameters as 
given in (7). 
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Fig. 9. Determination of time ttr with a1=0.2. 

An equivalent measure of the transient behaviour in the 
system is the following expression: 

(8)   E= 2 2
1 2

0 0

tr trt t

x dt x dt   

Since x1 is, for example, a displacement, and x2 speed, 
formula (8) represents the total energy found in the system 
described by (2) [16]. A dependency plot E=f(a1) is shown in 
Fig. 10. This plot is qualitatively consistent with the one 
shown in Fig. 5. 

 

Fig. 10. Dependence of system energy on value of a1. 

Final remarks and conclusions 
The paper proposes an original criterion for determining 

the transient behaviour in nonlinear systems. The criterion 
is illustrated using the Duffing oscilator that models both 
mechanical as well as electrical systems. The measure of 
the transient behaviour is time ttr defined using the deviation 
∆ from the mean value expressed by formula (6) and 
computed from the end to the beginning of the time interval 
te -ti (backward analysis). Time te is the final value of the 
time analysis, whereas ti stands for the initial time value. 
The time ttr at which the deviations should not be less than 
the assumed value, in this case Δ=5 103, is the end of the 
transient process in the system. 

A separate issue is the assessment of the transient 
behaviour using total energy E present in the system at 
known time ttr [16]. The energy defined by formula (8) 
is associated with the Lyapunov function of V(x)=x1

2+x2
2 [1], 

in which 2 2
1 2x x is the length of segment 0Pn, where Pn is 

an example trajectory point on the phase plane (Fig. 2). 
The paper shows that trajectories analyzed on the 

phase plane comprise a considerable amount of data 
concerning the transient behavior in the Duffing equation. 

The computations were made using a proprietary 
program written in C++. In order to solve equation (2) the 
Euler's method with the integration step h = 1.0e-6 was 
applied [15]. The program simultaneously calculates all the 
other elements of the presented analysis. Some selected 
results were compared with the computations obtained 
using Mathematica software [17]. 

The proposed criterion can be applied to Van der Pol, 
Lorenz and nonlinear Chua equations described, for 
example in papers [9, 13]. In the last two systems the 
transients can be determined in a three-dimensional phase 
space, with a larger number of state variables in Rn space. 

Nonlinear systems are characterized by a high impact 
of initial conditions on the results of the analysis. The 
dependence of the transient behaviour on the initial 
conditions using the original criterion will be the subject 
of another article. 
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