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Mathematical models of dynamics of friable media and analytical 
methods of their research 

 
 

Abstract. The method of studying the process of vibroseparation or adhesion of friable media has been developed. The analytical solution of this 
mathematical model of the researched system for resonance and nonresonance cases was constructed. It is established that the relative amount of 
friable medium motion greatly affects the quantitative and qualitative parameters of the system oscillations, in particular, the increase in the amount 
of motion of a friable media causes a decrease in the amplitude of the system in the transition through the resonance. 
 
Streszczenie. Opracowano metodę badania procesu separacji wibracyjnej oraz przyczepności materiałów sypkich. Zbudowano model 
matematyczny badanego systemu dla przypadków występowania rezonansu i jego braku. Ustalono, że wielkość przesunięcia względnego materiału 
sypkiego znacznie wpływa na parametry ilościowe i jakościowe oscylacji systemu, w szczególności zwiekszenie przesunięcia materiału sypkiego 
powoduje zmniejszenie amplitudy systemu podczas przejścia przez rezonans. (Modele matematyczne dynamiki materiałów sypkich oraz 
metody analityczne ich badań). 
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Introduction 
 Methods of vibration treatment, vibration transporting, 
separation, adhesion, and hence the corresponding 
machines and equipment have been widely used in various 
industries [1-4]. Their implementation contributes to the 
intensification of various production processes, increases 
the level of mechanization of labor-intensive work, 
increases economic efficiency and productivity. With an 
increase in the intensity of production, the scope of 
application of vibrating machines expands, and new ones 
are created for various technological operations [1,4,5]. This 
is due to the simplicity of their designs, and in many cases, 
higher performance than that of conventional machines. 
Especially effective application of vibration equipment is in 
the chain of technological processes, which are associated 
with the processing of various friable mixtures, their dosage, 
mixing, separation, sealing, etc. [6,7]. In this case, along 
with the intensification of technological processes during the 
vibrational impact on the material, the quality of the final 
product improves: due to constant vibration, a high degree 
of separation of the mixture by its physical, mechanical or 
other properties is achieved. 
 Despite the significant progress in the creation of a new 
and modernization of existing vibration equipment, 
theoretical studies related to the vibrational processes of 
friable media - sieve have not been properly developed due 
to the lack of satisfactory methods for analyzing these 
complex dynamic processes [8,9]. Above mentioned, on the 
one hand, led to the intensive introduction of vibration 
processes into production, on the other hand - it requires to 
change the basic dynamic characteristics of the working 
containers, and on this - the dynamics of the friable media, 
that is, using vibration machines of a controlled type 
[1,5,8,10-13]. For them, as a rule, there is no transition via  
the resonances of individual units and the machine as a 
whole, which ultimately reduces the power of driving 
engines compared to uncontrolled vibration machines. 
Therefore, it is important to study the influence of external 
factors on the amplitude and frequency of oscillations of 
friable media. The latter characteristics are also 
determinative for the calculation of the efficiency of the 
separation process [1]. 
 As a rule, the friable media has a complex structure and 
its characteristics are determined by the physical and 

mechanical properties of individual parts, their size, 
interaction, etc. [7,10,11] However, the study of the 
dynamics of the friable media on the basis of the dynamics 
of some of its parts does not yield the desired results, 
because such an approach requires an analysis of a large 
number of ordinary differential equations, in addition, the 
mechanism of interaction between individual parts of the 
friable media is difficult. A relatively simpler method for 
studying the dynamics of friable media is the so-called 
integral approach. Its essence is as follows: the friable 
media is modeled as an continuous medium (layering of flat 
homogeneous or heterogeneous beams) with some integral 
characteristics [2,7,10]. Such an approach in studying the 
dynamics of the media, its effect on the process of vibration 
separation is seen from the mathematical side easier, and 
from the practical - more acceptable. However, it is 
designed to be sufficient (for practical calculations) only for  
the lengthwise oscillations in a friable media. At the same 
time, the case of transverse oscillations of the friable media 
is more important from the practical side. It corresponds to 
a qualitatively new mathematical model, which has not been 
properly researched due to purely mathematical problems. 
 The study of the process of the dynamics of friable 
media during the process of vibration separation or 
adhesion within the framework of the physical model [2,7] 
under the condition of transverse perturbation of the motion 
of the friable media is the subject of this work. To do this: an 
appropriate mathematical model is constructed under the 
condition of transverse perturbation of its motion; 
dependencies have been obtained describing the 
parameters of the dynamics of friable media, and hence the 
separation process itself. Thus, we consider the dynamic 
process of an integrate friable media, which moves 
continuously along the inclined horizon under some angle to 
the sieve. The latter is exposed to external periodic 
perturbation, and is considered one-dimensional 
nonlinearly-elastic body. Moving continuous flow of friable 
medium is considered to have zero bending stiffness. The 
purpose of this work is to investigate the influence of the 
basic physical and mechanical characteristics of the sieve 
and the friable media, the parameters of the external 
periodic perturbation, the relative velocity of the friable 
media movement on the amplitude - frequency chara-
cteristic of the oscillations of the friable medium - the sieve. 
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 To solve the research problem it is necessary to 
construct a mathematical model of the process within the 
framework of the accepted physical model of the object 
being studied; to get analytical solution to it, to investigate 
the influence of the main external and internal parameters 
of the investigated system on the determining parameters of 
the process of vibration separation or adhesion (amplitude 
and frequency). 
 

Mathematical model of dynamics of the system „Friable 
media – sieve” 
 As was noted above, the physical model of the process 
of the separation or adhesion of the friable media is applied 
to the layering of flat “beams” of zero stiffness, which 
inactivate contact with the sieve. In this case, the position of 
the system continuous flow of friable media - a sieve is 
uniquely determined by the sieve bend function  , .u u x t  

The given value is calculated in the direction that is 
perpendicular to the longitudinal axis of the undeformed 
sieve and x  - the running coordinate of the cross section of 
the sieve model, deducted from the upper part of it along 
the middle line, t  - time. Let: m  - weight of unit of length of 

elastic sieve;  1m x  - the mass of the unit of length is 

conditionally separated from the friable media, which moves 
with relative speed V  to the same function  1m x  is slowly 

variable; E  - the modulus of the elasticity of the sieve 
material, and I  - the moment of inertia of the cross-section 
of the system relative to the axis, which coincides with the 
neutral axis in the undeformed position (the axis is 
perpendicular to the plane of oscillations). To obtain a 
mathematical model of dynamics of the investigated 
system, consider the "dynamic equilibrium" of arbitrary 
conditionally selected element. The forces acting on it and 
the forces of inertia of this element are determined as 
following (fig. 1):  
 

 
Fig. 1. The distribution of forces acting on the conditionally selected 
element of the system is friable media - the sieve 
 

M  - the bending moment of the cross section of the sieve 

with the coordinate x , and - 
M
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section with coordinate x  and 
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, respectively, in 

the section with the coordinate x dx ; 1 - the angle which 

forms from the axis OX tangent to the neutral line of the 
normal section with the coordinate x ; 2  - angle of 

inclination, which forms an axis OX tangent to a neutral line 
of normal section with coordinate x dx ; tq x u u dx( , , , )  - 

equivalent "small" external forces acting on a conditionally 
allocated element of the system, q( , , , )tx u u   - a function 

that describes their distribution along the length of the sieve 
(including resistance forces)  t t  ,   the frequency of 

external periodic perturbation. 

 Taking into account that for small oscillations of the 

considered element of the system 
u
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. In addition, taking into 

account the connection between the cross-sectional force 

Q  and the bending moment M  in the form 
dM

Q
dx

 , the 

equation of the "dynamic equilibrium" of the selected 
element of the elastic body along which the continuous fluid 
flow of the medium takes the form 

(1)  н , 0i

Q
dq dx q x t dx

x


  


. 

 In it, the forces of inertia iídq  are determined by the 

ratio 

(2) 
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 In the last expression, a symbol 
2

2

d

dt
 means a complete 

derivative of the corresponding function of time, therefore, 
for a friable media in the case of a constant velocity, its 
displacement takes place 

(3) 
       2 2 2 2

2
2 2 2

, , , ,
2 .

d u x t u x t u x t u x t
V V
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 The last dependence on the physical side can be 
interpreted as accelerating the friable media in a complex 
movement. Indeed, if we take transverse oscillations of a 
sieve in a portable motion, then the first term of this 
dependence is nothing more than an acceleration of the 
friable media in the portable motion, and the other two, 
respectively, in relative (at constant velocity of the friable 
media along the sieve) motion and coriolis or rotary 
acceleration. 
 If we take into account that the elastic properties of the 
material of the sieve satisfy the nonlinear technical law of 

elasticity [9]  3
1 1E     (

 
1

,u x t

x






 - the relative 

elongation of the sieve, and the parameter   characterizes 
the deviation of its elastic properties from the linear law, and 
below it is considered small in comparison with the elastic 
modulus E ), the equation (2) takes the form 

(4) 
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 The following restrictions on force factors allow the 
presented differential equation to be presented as 

(5) 
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where 
2

2 2 1

1 1

,
EI V m

m m m m
  

 
 and the maximum value of 

its right part is small in comparison with the maximum value 
of the terms of its left part (l – the length of the sieve). To 
analyze the dynamic process on the basis of the obtained 
equation, we add boundary conditions that are consistent 
with the hinge connection of the sieve and the container, i.e.  
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(6)  
2

20,
0,

, , 0;
x j

x j

u
u x t j l

x



 


. 

 The task is to determine the influence of the basic 
physical and mechanical characteristics of the system of the 
moving flow of friable media - the sieve, as well as external 
factors on the determinant parameters of the oscillations of 
the friable media, and thus on the process of separation itself. 
 Obtained dependences can be based on the approximate 
analytical solution of the nonlinear differential equation (4) 
under the boundary conditions (5), since the exact solution of 
this problem cannot be found. The conditions imposed on the 
right side of equation (4) allow us to use the general ideas of 
perturbation methods for constructing the solution of the later. 
The later are most effectively used under the condition of the 
existence of a closed solution of an unperturbed analogue of 
it, that is, the equation 

(7)  
2

20,
0,

, , 0;
x j

x j

u
u x t j l

x



 


, 

under boundary conditions similar to (5). We shall show that 
the dynamic process for the unperturbed movement can be 
interpreted as an overlay of two waves, that is 
(8)      0 1 2, cos cosu x t C x t C x t           , 

where 1, 2, , ,C C     - the content and meaning of which will 

be set below. 
 The representation of the solution of the equation in the 
form (7) will satisfy the boundary conditions (5) if the wave 
number k  and the frequency of the wave process   are 
bound by the dispersion relation 
(9) 2 2 2 2 4 0       . 
 The obtained dispersion relation determines the 
frequency of the process as a function of a wave number in 

the form 2 4 2 2      . To determine the constant 

values 1C  and 2C ,  as well as the relation between the 

initial phases of the direct and reflected waves, that is, the 
parameters   and   boundary conditions allow to set: 

k

l

  ,     and 1 2C C a   . Thus, the single-

frequency wave process of the boundary value problem, 
which is described by the unperturbed equation (4), can be 
represented as a dependence 

(10) 

 
2

2 2
0

2
2 2

, cos

cos .

k k
u x t a x t

l l

k k
x t

l l
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                  
                

 

 The obtained result is at the same time a is a mandatory 
condition for describing the dynamics of perturbed motion of 
a friable media - a sieve. According to them, the first 
asymptotic approximation of the single-frequency process 
of the studied system is described by the dependence 

(11) 
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2
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2
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                 

 

 That is, for perturbed motion parameters a  and   will 

already be functions of time, in addition, the function 

 U a x, , ,   must be periodic for arguments   and   

with the period 2  and not contain the first harmonics of 

the phase of the own oscillations. The specified will be 
executed on condition 

(12)  
2

0

sin
, , , 0U a x d

cos

 
  


 

 
 

 . 

 The physical content of the superimposed condition is 
as following: the amplitude of the dynamic process 
coincides with the amplitude of its first mode, and the 

function  U a x, , ,   only affects the form of oscillations 

and is determined by the right-hand side of equation (10). In 

the case of unknown functions of time  a t  and  t , 

then they are determined in such a way that the asymptotic 
representation of the solution with the accuracy to the 
second order of smallness satisfies the initial equation and 
boundary conditions. The basis for finding it is the 
differential equation 

(13) 

 

2 2 2 4
2 2 2

2 2 4

2
2

2

4 sin sin 4

in cos sin cos

2 cos sin , , , ,

U U U U
V

x

da x d
a a
dt l dt

x x
s V a

l l l

x
Va F a x

l l

   
   
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   

    

   
   

    

  

    
 

 

. 

where:  F a x, , ,   - known function. 
 

Practical implementation of the proposed method of 
studying the process of vibroseparation or adhesion of 
friable media 
 Finding the laws of change of the defining parameters of 
the oscillations of a friable media - a sieve solves the 
problem. Therefore, the following will be the main focus it is 
concentrated precisely on determining the laws of changing 
these oscillations of the specified system. It must be 
emphasized that it is exposed to external periodic 
perturbations frequency  . The result of this action 

essentially depends on the ratio between   that  , that is, 

between the frequency of external perturbations and the 
frequency of its own oscillations. If there is a connection 
between the given frequencies p q    ( p  and q  are 

mutually prime numbers), this case of oscillations is called 
resonance, and it is characterized by a significant increase 
in the amplitude of oscillations. A simpler case of 
oscillations is nonresonance, i.e. p q   . Without going 

into the mathematical procedure of finding these functions, 
we give only the resulting dependencies for the case when 

 ( , , cos
s

u
q u x t h t

t
      

, h , S ,   - constants. Thus, 

for the nonresonance case, the amplitude-frequency 
response of the system oscillations is determined by the 
system of ordinary differential equations 

(14) 

 
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1

1

2 2

2
1

2 2
1

1

,

3

32

.
8

s sda
a

dt m m

d a

dt l m m

m V

l m m

 

  





 


  


    

. 

 Figures 2 and 3 show the laws of the change in the 
amplitude and frequency of oscillations according to the 
different kinematic characteristics of the friable media, in 
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accordance with the dependences (13), at 
9 2E 2 06 10 N / m,  , l 2m , 1m 25kg / m , m 7kg / m . 

 The calculations are made for different relative 
velocities: 1) V 0 m/s;  2) V 2 5 m/s;,  3) V 3 5 m/s;,  

4) V 7 5 m/s;,  

(15) 
 

22 2 2
1

1 2
1 1

3 a m V

32 l m m l m m 8
,

            
 

 The obtained dependencies show that for a 
nonresonance case, the influence of the small-size external 
periodic perturbation on the transverse vibrations of a 
system friable media - a sieve is insignificant. To a greater 
extent, the influence of the velocity is manifested, more 
precisely, of the relative amount of motion on both the 
amplitude and the frequency of damped oscillations, 
namely: 
 for friable media with more relative motion along the 

elastic sieve, the rate of attenuation of their own 
oscillations is greater; 

 the own frequency of the system of a moving flow of 
friable media - a sieve is smaller at higher values of the 
relative amount of motion of the friable media. 

 The obtained theoretical results have practical 
significance not only for the evaluation of the separation 
process, vibration processing or adhesion, but also serve as 
a basis for avoiding such undesired processes as 
resonance. 
 

 
Fig. 2. Time dependence of the amplitude and frequency of a 
system of a friable media - a sieve with different kinematic 
characteristics of friable media 
 

 More complicated is the resonance case of the studied 
system. Below we will stop only on the case of the main 
resonance, i.e.   . As shown in [11,12,14-16], resonant 
amplitude value greatly depends on the phase difference of 
its own and forced oscillations. In addition, the amplitude of 
the passage of the resonance significantly depends on the 
rate of change in the frequency of the force in the 
resonance zone. In the same way as for a nonresonance 
case, we will not go into mathematical calculations, but let 
us give only the dependencies that describe the amplitude 
of the system's friable media - the sieve. Thus, the basic 
parameters describing the resonance oscillations of the 

system under study in the case of the main resonance are 
of the form 

(16) 

 

   

   

     

s 1 s

1

1

2 2
1

1

2 2

2
1 1

da
a

dt m m

2 h

t m m

d m V
t

dt l 8 m m

2h 3 a

t m m a 32 l m m

cos ,

sin ,


   




 
   

         

 
  
    

 

where   - the phase difference between the own and 

forced oscillations, and the frequency  t  in (15) takes 

close to the frequency of its own oscillations  . 
 

 
Fig. 3. Time dependence of the amplitude and frequency of a 
system of a friable media - a sieve, on condition that m1=50 kg/m 
 

 In fig. 4 and 5 corespondently to differential equations 
(15), are represented  the law of variation of the amplitude 
of oscillations for the different values of  the friable media 

1( )k mV . 
 The presented dependencies show that the resonance 
phenomenon of the moving along the sieve of a friable 
media is determined not only by the frequency of the 
external periodic perturbation but also by the number of its 
relative motion along the last. For friable media with linear 
mass, which differ in a small amount at identical velocities 
along the sieve, the amplitudes of the transition through the 
resonance are almost identical. For the passage of the 
resonant area of friable media with a greater number of 
relative motion, the amplitude of passage of the resonance 
is less. The above mentioned can serve as a basis to 
certain extent for the creation of means for suppressing the 
oscillations of certain mechanical systems. 
 The presented dependencies show that the resonance 
phenomenon of the moving along the sieve of a friable 
media is determined not only by the frequency of the 
external periodic perturbation but also by the number of its 
relative motion along the last. For friable media with linear 
mass, which differ in a small amount at identical velocities 
along the sieve, the amplitudes of the transition through the 
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resonance are almost identical. For the passage of the 
resonant area of friable media with a greater number of 
relative motion, the amplitude of passage of the resonance 
is less. The above mentioned can serve as a basis to 
certain extent for the creation of means for suppressing the 
oscillations of certain mechanical systems. 
 

 
Fig. 4. The law of variation of the amplitude of oscillations transition 
through the main resonance for the big values of  relative r move of 
the media: 1-k=60 kgm/s; 2-k=120 kgm/s; 3-k=180 kgm/s 

 
Fig. 5. The law of variation of the amplitude of oscillations in the 
transition through the main resonance at: 1-k=10 kgm/s; 2-k=20 
kgm/s; 3-k=30 kgm/s 
 
 The basic idea of the above work can be used for the 
case of nonlinear longitudinal oscillations of moving friable 
media along the sieve. A mathematical model of dynamics 
of a friable medium - a sieve will be a differential equation 
for the corresponding boundary conditions.  

(17) 
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In equation (16) all symbols are saved, the same as for the 

case of transverse oscillations, only  u x t,  longitudinal 

movement cross section of the sieve with a coordinate x  at 
any moment time t , and S  - cross-sectional area of the 
sieve.  
 
Conclusions 
 The obtained theoretical and constructed graphic 
dependencies show: 
 with increasing in the relative amount of motion the 

friable media along the sieve, own frequency of 
oscillations to the systems "a friable medium - a sieve” 
decreases, which negatively affects the process of 
vibration processing or separation; 

 or larger values of the relative amount of motion of a 
friable medium, velocity attenuation amplitude increases; 

 amplitude of oscillations when passing through the main 
resonance takes less value for a more rapid change in 
the frequency of the force in the resonance region; 

 the amplitude of passage of the resonance is less for 
larger values of the relative amount movement of a 
friable medium. 

 At the same time, the basic results of the work can be 
used to study the dynamics of the system “a friable media – 
a sieve”, as well as more general properties of the friable 
media and slowly variable its speed along the sieve. 
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