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Simulation and development of energy-efficient vibration 
machines operating in resonant modes 

 
 

Abstract. Studied in the paper are the dynamic characteristic of a vibrating machine with two vibrating elements. The vibrating machine is simulated 
as a discrete-continuous system. Set up are the motion equations, and determined are the basic parameters of the vibration machine. Defined are 
the criteria for the first and the second stability ranges of the vibration machine as a resonance system. Determined are the optimal numerical values 
of the basic parameters of the vibration machine which are required for ensuring energy-efficient operation of the machine. Proposed is a new 
energy-efficient vibration machine designed for forming concrete foundation blocks. 
 
Streszczenie. W artykule opisano dynamiczną charakterystykę wibrującej maszyny z dwoma elementami wibrującymi. Maszyna wibracyjna jest 
symulowana jako dyskretny system ciągły. Ustawione są równania ruchu i określone są podstawowe parametry maszyny wibracyjnej. Zdefiniowane 
są kryteria pierwszego i drugiego zakresu stabilności urządzenia wibracyjnego jako systemu rezonansowego. Określone są optymalne wartości 
liczbowe podstawowych parametrów maszyny wibracyjnej, które są wymagane do zapewnienia energooszczędnej pracy maszyny. Proponowana 
jest nowa energooszczędna maszyna wibracyjna przeznaczona do formowania betonowych bloków fundamentowych. (Symulacja i rozwój 
energooszczędnych maszyn wibracyjnych działających w trybach rezonansowych). 
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Introduction 
Energy saving is very important in developing new 

technologies and industrial equipment. The existing 
technologies and industrial equipment do not comply 
sufficiently with modern requirements concerning energy 
saving. One of the methods for solving the problems 
associated with energy saving is the development of 
vibration machines rated for operation in resonant vibration 
modes. Resonance vibration machines are widely used in 
the mining industry, the building-and-construction industry, 
and other industries. It is reasonably to use resonance 
vibration machines in processes where the vibration 
machine actuator acts directly on the material being 
processed. Such processes include processes for 
transporting, sorting, mixing, and compacting materials. 
Effective operation of resonance vibration machines is 
possible if the elasticity and dissipation properties of the 
vibration machine-medium system are accounted for, 
because such properties have a direct effect on the 
operational mode of the vibration machine. The further 
development of resonance vibration machines will be based 
on the combination of elastic and dissipative forces acting in 
the vibration machine-medium system. For this reason, it is 
necessary to use new methods for simulating, studying, and 
designing such systems. 

 
Analysis of study results and publications 

One of the basic problems concerning vibration 
machines consists in developing and validating their 
mathematical models. Paper [1] contains information on 
simulating vibrations in complex systems with indefinite 
nonlinearities, which are often spatially localized. Studied in 
this paper is the method, based on inverse optimization, for 
simulating dynamic nonlinearities in locally nonlinear 
systems.  

Studied in the paper [2] are the factors that cause 
changes in the dynamic response of a system consisting of 
two plates connected by a single fastening element. 
Notwithstanding the fact that paper [2] does not relates to 
the studies discussed in paper [1], paper [2] is of interest 
due to its conclusions on the elasticity modulus. It is 
determined that the elasticity modulus of the system 

depends on the system dynamic response. There is no 
information about the system operating modes in which the 
said effect becomes apparent. 

Paper [3] contains the results of analysis of nonlinear 
dynamic systems. It is considered that the use of the 
conventional linear Kelvin rheological model for the analysis 
is over-simplification. The authors of the paper propose 
another method based on consideration of elastic and 
dissipative forces. The authors use an ordinary differential 
equation of third order for the analysis of vibrations in a 
degenerate system. Analyzed are all-harmonic vibrations, 
and used for the analysis is the method for setting up the 
system equations on the basis of energy balance and 
power balance. There is no information about interaction 
between systems with different properties and about the 
possibility of nonlinear vibrations. 

Paper [4] contains the results of studying dynamic decay 
in linear mechanical systems with two degrees of freedom 
when two excitation forces act simultaneously on the 
system. Studied in the paper are the characteristic features 
of dynamic interaction between the system elements under 
action of external excitation forces. Under certain 
conditions, it is possible to control the system elasticity 
parameters. 

The characteristics of natural vibrations in nonlinear 
systems with light damping, which are presented in paper 
[5], were used for the experimental studies of such 
vibrations. The study method is based on the estimation of 
the instantaneous frequency and amplitude of the envelope 
of damped vibrations after a period of steady-state 
vibrations in the mechanical system. The high accuracy of 
the results is ensured due to the assumption that the 
expected dissipation forces in the system do not 
significantly affect the vibrations in the system. This 
assumption is valid if dissipation in the system medium 
does not depend on frequency. 

Paper [6] contains the characteristics of a nonlinear 
oscillator with two degrees of freedom. The characteristics 
are used for describing the oscillator operation on exposure 
to an external excitation force. Proposed in the paper is the 
analytical method for considering natural and forced 
vibrations. The authors of the paper performed the analysis, 
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on the basis of energy balance, for predicting resonance 
operating points where the characteristics for natural 
vibrations intersect with the characteristics for forced 
vibrations. The authors propose the method for calculating 
accuracy in predicting the resonance operating points. The 
resonance operating points so predicted are compared with 
the corresponding resonance operating points on 
characteristics obtained in numerical simulation. 

Proposed in paper [7] is the method for analyzing a two-
stage nonlinear system with linear and nonlinear elasticity 
characteristics. According to this method, the two nonlinear 
differential equations of the system with two vibrating 
elements are reduced to a single nonlinear differential 
equation. This method is effective. Used in the analysis is 
also a linear differential equation of second order based on 
a variation method. 

As is stated in paper [8, 21], the motion equations set up 
for vibration machines apply to vibration machines with two 
vibrating elements, in which the vibration machine actuator 
and the medium with material being processed are 
simulated as solid media. Presenting concrete mixture as 
a solid medium is improper [9]. The studies discussed in 
paper [10] demonstrate that concrete mixture on exposure 
to vibrations has elastic properties, and therefore is 
characterized as a medium with distributed parameters 
[13,14, 20]. 
 

Purpose of the paper 
The purpose of this paper consists in determining stable 

ranges of resonance vibrations when a vibration machine is 
in operation. According to this purpose, the following tasks 
should be performed:   

1. To develop the physical and mathematical models of 
a resonance vibration machine-medium system and 
to solve the motion equations of the system. 

2. To study the parameters that are required for 
ensuring stable resonant modes and to determine 
methods for stabilizing resonant modes in operation 
of the vibration machine. 

3. To propose a high-efficient vibration machine of new 
design. 

 

Methodology for developing the mathematical model of 
the resonance vibration machine-medium system and 
setting up the system motion equations 

In this paper, it is assumed that concrete mixture has 
elastic properties, and such properties should be 
represented in the mathematical model of the concrete 
mixture. Therefore, the mathematical model of the vibration 
machine-concrete mixture should be presented as 
a discrete-continuous mathematical model. When analyzing 
such a model, some problems occur, which are specifically 
characteristic for nonlinear resonance systems. To solve 
these problems, paper [11] proposes the method for 
changing from the discrete-continuous mathematical model 
to a discrete mathematical model with consideration for the 
wave properties of concrete mixture. For forming a new 
calculation model, it is necessary to determine the ratio 
between the period of an excitation force and the time of 
propagation of waves in concrete mixture. With this 
provision (see Figure 1), it is possible to change from the 
combined discrete-continuous mathematical model to 
a discrete mathematical model [18, 19, 22].  

According to the design model (see Figure 1b), for the 
upper vibrating element and the upper spring element with 
discrete parameters, the wave properties of concrete 
mixture are taken into consideration [12]. In this case, the 
combined discrete-continuous mathematical model for the 
vibration machine-concrete mixture system should be such 
as is shown in Figure 2. 

 
Fig. 1. Change from the combined discrete-continuous 
mathematical model (a) to a discrete mathematical model (b) 

 
Fig. 2. Design model of the studied resonance vibration system: 
m1 – reactive weight; m2 – active weight, including the weight of the 
concrete mixture; c0, c1, c – elasticity coefficients for vibration-
isolating, resonance, and vibration-limiting elements, 
correspondingly; b0, b1 – energy dissipation coefficients for the 
corresponding spring elements; x1, x2 – displacements of the 
vibrating elements m1 and m2; F(t) – external excitation force 
 

The shock-and-vibration machine with a vibration limiter 
(see Figure 3) is characterized by two vibration modes, that 
is, the mode with separation of the vibrating element from 
the vibration limiter and the mode without separation of the 
vibrating element from the vibration limiter. The condition for 
the mode without separation of the vibrating element from 
the vibration limiter is the following [15, 16, 17]: 
(1)    0x  

where: x0 is the amplitude of forced vibrations of the 
vibrating element m2 in a steady state without separation of 
the vibrating element from the vibration limiter,  is the 
deformation of the vibration limiter under gravity,  = Fcm/c, 
and c is the stiffness coefficient of the vibration limiter. 

 

If this condition is not fulfilled, the vibrating element m2 
vibrates with separation from the spring element, with 
periodical impact action on the spring. In this case, 
superharmonic and subharmonic vibrations are possible. 

According to the study technique, the following 
sequence of operations for performing the specified study 
tasks is accepted: 
1. Setting up the motion equations for shock-and-vibration 
machine system in the mode of vibrations with separation of 
the vibrating element from the vibration limiter and in the 
mode of vibrations without separation of the vibrating 
element from the vibration limiter. In order to reduce the 
number of parameters in the equations, the equations 
should be set up in dimensionless form. 
2. Determining and specifying the initial values of 
displacement, velocity, and time in the shock-and-vibration 
machine system equations. 
3. Comparing the system equations at instants of time at 
which the mode of vibrations with separation of the vibrating 
element from the vibration limiter changes to the mode of 
vibrations without separation of the vibrating element from 
the vibration limiter, that is, when the velocities of the 
vibrating elements and spring elements are equal. 
4. Determining the shock-and-vibration machine system 
parameter ranges in which the system operating mode is 
stable. 
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Analysis of the stability of a vibration machine-medium 
system in modes of harmonic vibrations ant nonlinear 
vibrations 

According to the study technique, the equation of the 
shock-and-vibration machine system with two vibrating 
elements in the operating vibration mode without contact 
between the vibrating elements is the following: 
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system, b1 is the resistance coefficient, c0 is the support 
elasticity coefficient, and  is the coefficient that accounts 
for the position of the point at which the excitation force F0 
is applied, and x is the reduced displacement of the 
vibrating elements with no contact between the elements. 

The initial condition for vibration accelerations is the 
following:  
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The acceleration values are limited according to (3). 
Time is measured from the instant when the acceleration is 
maximum. With the specified initial condition, the solution of 
equation (2) for the displacement of the vibrating element is 
the following: 
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The vibration velocity is determined as follows: 
     

   
 

 

1 1

1

1

1 1 0 1 2 0 1

0 1

0 1 0 1 0 2 0 1 22 2 2 2
0 1

cos sin

cos
2

sin
sin cos .

4

b t

t t

bt

x b e A t A t

F t

e A t A t
b

 

  
   

  

 





     

 
        

 





  

   


 

The coordinates A1and A2 are determined as follows: 
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With contact between the vibrating elements, equation (2) 
can be presented as follows:  
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where: x(+) is the displacement of the reduced system 
subject to forces in equation (5).  
Let us to designate 
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The vibration velocity similarly to equation (5) is the 
following: 
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Let us to present the equation in dimensionless form. 
For this purpose, it is necessary to impose the following 
designations: 
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Accordingly, the following equation is obtained:  
(8)   22 .z kz k z f     

The solution of  equation (8), with the specified initial 
conditions and designations of parameters, provides the 
possibility to determine the parameters that affect the 
stability of the resonance vibration system [13,14, 15]. 
1. The period * for which the maximum deformation of the 

vibration limiter is achieved: 
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It is evident that the actual period t* for which the maximum 
deformation of the vibration limiter is achieved is 
determined depending on the period *  as follows: 
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2. The maximum deformation of the vibration limiter: 
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The actual deformation is 
  axma 

. 
3. The period of impact action: 
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4. The velocity recovery coefficient: 
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5. The velocity at the end of interaction between the 
vibrating elements: 
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The actual velocity is .V    . 
6. The energy absorbed by the vibration limiter due to 
impact action: 
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2
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Equations (9) … (15) characterize the parameters of the 
operating modes of the shock-and-vibration machine. The 
calculations demonstrate that the period of impact action 
timp decreases with the increase of the elasticity coefficient c 
of the vibration limiter. If the coefficient c is constant, the 
period of impact action decreases with the increase of the 
weight m2. The period according to the determined 
parameters is 0.01 … 0.018 c. For the frequency  = 157 
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rad/s, the period is a fraction of 0.33 … 0.43 of the vibration 
period T. The vibration period is determined as T = timp + tc, 
where tc  is the period of motion of the vibrating element 
without contact with the vibration limiter. If  V = x, the 
period of impact action is determined as follows: 

   

2 1
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The value R is determined as |amax|timp, where |amax| is the 
maximum impact acceleration. As the velocity is  
V+ = -RV after an impact and V before the impact, the 
acceleration is determined as follows:  
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 Table 1 contains data on the velocity recovery 
coefficient and period of impact action for vibration 
frequency  = 150 rad/s. 
 
Table 1. Values of the velocity recovery coefficient (R) and period 
of impact action (timp) 

, s-1 150 150 150 0,53 150 150 

R 0,5 0,6 0,7 0,8 0,9 1,0 

timp (s) 0,0019 0,0063 0,0095 0,012 0,014 0,015 

 

The values of the basic parameters affecting the stability 
of vibrations demonstrate that for providing acceleration  
amax ≈ 5gin impact action, the period of the impact action 
should be tyдs at R ≈ 0,3...0,4.The values of timp can 
be determined from equation (16). 

The values of the basic  parameters  affecting the 
stability of vibrations in the vibration machine at  = 150 
rad/s and x0 = 710-4 m are presented in Table 2. 
 
Table 2. Values of the parameters  affecting the stability of 
vibrations in the vibration machine at  = 150 rad/s and 
x0 = 710-4 m 

|amax|, relative to g 3 3 4 4 5 5 

 δ 0,36 0,28 0,36 0,28 0,36 0,28 

R=R0(δ) 0,3 0,4 0,3 0,4 0,3 0,4 

tуд, с 0,046 0,0050 0,0035 0,0038 0,0028 0,0030

|amax|, relative to g 6 6 8 8 10 10 

δ 0,36 0,28 0,36 0,28 0,36 0,28 

R=R0(δ) 0,3 0,4 0,3 0,4 0,3 0,4 

timp (s) 0,0023 0,0025 0,0017 0,0019 0,0015 0,0014

 
The results of the analysis demonstrate the existence of 

several stability ranges that are determined according to the 
following equations:  
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 The parameters 1 and 2 in equations (18) take into 
account the weight of the vibration machine (see Figure 3) 
and the presence of two elastic elements with the elasticity 
coefficients c1 and c. The parameter 1 is the ratio of the 
system natural frequency, when the vibrating elements do 
not contact with spring element, to the squared forced 
vibration frequency 2. The parameter 2 is the ratio of the 
system natural frequency, when the vibrating element is in 
contact with spring element, to the squared forced vibration 
frequency 2. The parameter f is the ratio of the reduced 
weight of the vibration machine to the excitation force. If the 
weight m of the vibration machine is specified, the 
parameters that should be determined are the elasticity 
coefficient c and the mass static moment of unbalance 
m0r0, since the natural vibration frequency  depends, 
generally, on the vibration machine design. Additionally to 
the parameters  and f, the stability range depends on the 
period  of contact between the vibrating elements. The first 
stability range in the resonance vibration mode is provided if 
the values of the parameters  and f are determined as 
follows [14, 15]: 

20,8 1,3

1,3 2f

 
   

The value of the parameter  may be 4  2. These 
values represent the second stability range. With 
consideration for the first stability range, a new shock-and-
vibration machine (see Figure 3) for forming  hollow 
concrete foundation blocks was proposed. 

 

a)

b)  

Fig. 3. Resonance shock-and-vibration machine for forming 
concrete foundation blocks: a) – Schematic diagram; b) – 
Construction design; 1 – Lower frame; 2 – Vibration exciter; 3 – 
Vibration limiter; 4 – Vibration-isolating support; 5 – Spring support; 
6 – Pan; 7 – Equipment for closing and opening the side plates; 8 – 
Side plate 
 
Conclusions 
1. Developed is the mathematical model of a resonance 

vibration machine system. This model takes into 
account the elastic, inertial, and dissipative properties of 
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the actuator of the machine and material being 
processed. 

2. Analyzed and determined are the parameters that affect 
the resonance operating mode of the vibration machine. 
It is determined that, for vibration  frequency 100 … 160 
rad/s, the resonance vibration mode is possible if the 
ratio of the period of impact action to the vibration period 
is 0.25 … 0.31. If the parameters  1.7 and f = 2.5, it is 
possible to set  up the second stability range with 
minimum energy consumption in supporting vibrations. 

3. Proposed is a new resonance shock-and-vibration 
machine designed for forming hollow concrete blocks. 
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