
138 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 3/2019

Artur PALA1, Marek MACHACZEK1

(1) Opole University of Technology, Institute of Computer Science

doi:10.15199/48.2019.03.31

Parallel computing of two-parameter bifurcation diagrams of an
electric arc model with chaotic dynamics using Nvidia CUDA

and OpenMP technologies

Abstract. This paper presents parallel and massively parallel calculations of two-parameter bifurcation diagrams of an electric arc model. A simple
dynamical model of electric arc is used. Such a model can show complex two-parameter bifurcations with periodic and chaotic responses. Two
different parallel computing technologies were used to implement the calculations. Parallel computations are implemented using the OpenMP library
and CPU processors. Massively parallel computations are implemented using the Nvidia CUDA technology and GPU processors.

Streszczenie. W artykule przedstawiono równoległe i masowo równoległe obliczenia dwuparametrycznych diagramów bifurkacyjnych dla modelu
łuku elektrycznego. Do analizy wykorzystano dynamiczny model łuku elektrycznego z okresowymi i chaotycznymi odpowiedziami. Do realizacji
obliczeń wykorzystano dwie różne technologie. Obliczenia równoległe zaimplementowano przy użyciu biblioteki OpenMP i procesorów CPU.
Obliczenia masowo równoległe zostały zaimplementowane przy użyciu technologii Nvidia CUDA i procesorów GPU. (Równoległe obliczanie
dwuparametrycznych diagramów bifurkacyjnych dla modelu łuku elektrycznego z wykorzystaniem technologii Nvidia CUDA i OpenMP). Równoległe
i masowo równoległe obliczenia dwuparametrycznych diagramów bifurkacyjnych dla modelu łuku elektrycznego

Keywords: Electric Arcs, Bifurcations, OpenMP, Nvidia CUDA, Multi GPU, Dynamical Models, Parallel Computing.
Słowa kluczowe: Łuk Elektryczny, Bifurkacje, OpenMP, Nvidia CUDA, Wiele GPU, Modele Dynamiczne, Obliczenia Równoległe

Introduction
This paper presents two-parameter bifurcation diagrams

for a simple electric arc model. The bifurcation diagrams are
understood as changes in the oscillatory solutions when two
parameters of the analyzed electric arc model vary
simultaneously. The goal is to obtain high resolution color
diagrams showing various oscillatory and chaotic
responses. However, obtaining such two-parameter
diagrams requires solving the underlying system of ordinary
differential equations (ODEs) many hundreds of thousands
(or millions) of times. In each solution, in addition to solving
the system of ODEs, it is necessary to find the local
maxima, identify period of oscillation, or determine that the
solution is chaotic or unstable. The final graphical
representation of the identified solutions is the bifurcation
diagram. Such a process of solving ODEs, identifying the
type of response (i.e. period-n, chaotic or unstable) would
be very time and memory consuming for large size of the
two-parameter matrix values and, for those reasons, its
sequential execution would not be obtainable in practice.
The answer to this problem is the use of parallel
programming.

Parallel programming is an increasingly popular way of
solving complicated problems. Parallel designed and
implemented program code is characterized by a better use
of resources and shorter computation time. Parallelization
usually aims to shorten computation time by using more
computing units, e.g. multiple cores and graphical
processing units (GPUs). Many calculation problems have a
sequential nature, that is, instructions are to be executed
one by one and the next instruction depends on the
previous one. Such difficulties are a serious limitation for
the possibility of parallelizing the code. The code
parallelization process can be further complicated by the
specific hardware architecture, for example the GPU.
Another limiting factor, when using a GPU, may be the
amount of available memory.

In [1-3] typical models of electric arcs are presented.
The models are based on various arc voltage-current (V-I)
characteristics to be used to estimate energy in the case of
an arc fault [1] and one-parameter bifurcation diagrams in
[2,3]. Various V-I characteristics results in different
nonlinear systems of ODEs serving as models of electric
arcs. As shown in the literature, a small change in the value

of a parameter (for example, resistor, inductor or capacitor)
may lead to a significant change in the nature of the ODE
system’s response [4]. Combining changes of two
parameters may result in very complicated two-parameter
bifurcation diagrams [5,6]. This is in fact the case for the
electric arc circuit considered in this paper.
 In this paper, we present bifurcation diagrams calculated
for typical electric arc circuits shown in Fig. 1. Our diagrams
are calculated for any pair of two parameters (from the
three ones, R, L and C present in the arc circuits) changing
simultaneously.

Fig. 1. Two typical electric arc circuits.

 The following is a system of ODEs for the two electric
arc circuits shown in Fig. 1. The system on the left side of
(1) describes the circuit A. On the right side of (1) a
dimensionless form of the ODE system is shown [2].

)i
i

)U(i
u(

L

1

d

di








)xzy(

L

1

dt

dx m

(1)
)RiuE(

RC

1

d

du




→)Rxy1R(

RC

1

dt

dy


)ii(
1

d

di 22
2







zx

dt

dz 2 

where:  i,
2
0

I/
2

iz,
0U
cu

y,
0I

i
x  , is the arc current,

U0, I0 are two constants from the static arc voltage-current

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 3/2019 139

V-I characteristic n
)

Io

i
(

0
U)i(U  and the constant n<0.

Additionally, θ=/t is a time constant, R, L, C are the:
resistance, inductance and capacitance, and the m constant

results from the fact that 0

2

1n
m1 


 . Typically, m= ̶ 2/3,

as it follows from n
i)i(U   for n= ̶ 1/3. One can also

consider the system of equations on the right side of (1), as
the system on the left side with the unit values U0 = I0 =θ =1
and E =RI0 +U0. By making an appropriate change of
variables, the system (1) also describes the circuit B in
Fig. 1 [2].

Calculation of bifurcation diagrams
The bifurcation diagrams presented in this paper show

the changes in the nature of the response of (1) when the
pairs of parameters (R,L), (R,C) or (L,C) vary in certain
intervals, as follows: Rmin ≤ R ≤ Rmax, Lmin ≤ L ≤ Lmax,
Cmin ≤ C ≤ Cmax. When solving the system (1), two different
time horizons were used, namely: 0 ≤ t ≤ 500 and 0 ≤ t ≤
2000. The initial conditions for all presented cases were the
same and equal x(0)=0.5, y(0)=4.0, z(0)=1.0. The integration
step in the Runge-Kutta method of order IV (R-K IV) was
also the same in all cases and equal h = 0.005.

The search for the local maxima of the ODE oscillatory
solution of (1) and period identification were done in the
interval 200 ≤ t ≤ 500 for the overall time horizon 0 ≤ t ≤ 500
and in 1700 ≤ t ≤ 2000 for the time horizon 0 ≤ t ≤ 2000. The
period of oscillations was identified in the range from 1 to 16
maximum values. That is, period-n oscillation means that
there are n distinguished maximum values in one period,
with n = 1 ,…,16. Any oscillatory response with the number
of maximum values greater than 16 in one period was
classified as period-16 type of response. If a chaotic
response was identified, then such a response was also
classified as period-16 type of response. Limiting of the
identification of the type of response as period-1 to period-16
does not seem to be a significant restriction, and one can
easily consider an extension of the identification process to
period-32 or even period-48 type of response. Each period-n
type of response has been assigned a specific color on a
bifurcation diagram. The color in the diagram was the
lightest when the largest number of maxima was found in
one period (that is if n=16) and the darkest when n was
equal to 1. The absolute error tolerance value for comparing
subsequent maxima values in the period identification
process was tol = 0.0005. This value was determined
empirically based on the observation of noise levels
appearing in the obtained bifurcation diagrams.

Implementation of parallel calculations

The R-K IV method was used to solve system (1). This
is the well-known and widely used method from a wide
class of the ODE numerical algorithms. The method
provides a good accuracy of computations with reasonably
large values of integration steps. The algorithm of this
method is expressed by the following formula [7]

(2))kk2k2k(
6

1
xx 4321i1i 

where: i iteration counter, N,...2,1i  ; N assumed
number of integration steps;

)t,x(fhk ii1 )2/ht,2/kx(fhk i1i2 

)2/ht,2/kx(fhk i2i3 )ht,kx(fhk i3i4 

)t,x(f ii function of the right hand side of ODE;

h value of the integration step; t time variable

Parallel computations were implemented on graphics
cards using Nvidia CUDA technology and on standard CPU
processors using the OpenMP library [8-12].
 Nvidia CUDA technology [8-10] is a massively parallel
computing platform based on the use of GPUs. Thanks to
the use of light thread technology, it is possible to effectively
use a very large number of execution cores. Calculations on
the CUDA platform are based on a heterogeneous
processing model. This means that the CUDA device is
installed in the host system as a separate computing
subsystem having its separate resources. Performing
calculations on the CUDA device always requires
controlling done on the host side and copying data between
the host and the CUDA device. The specific nature of the
calculation process within the Nvidia CUDA technology
makes it suitable for the implementation of very specific
algorithms characterized by a high degree of parallelization,
high computational complexity and operation on relatively
large data sets.
 OpenMP [11,12] is an API for writing parallel programs
on multi-core processors with shared memory. This library
can be used, among others, for C and C++ programming on
various platforms (e.g. Windows, Linux). By using special
instructions programmer decides which parts of the code
will be executed in parallel. The code execution is
parallelized by creating new threads (fork) that perform the
tasks assigned to them. After completing their individual
tasks, the threads merge (join) and the program is executed
sequentially by the main thread. Master thread can be
divided again at another place and the program will be
executed in parallel. Threads can work with different loads,
and their number can be assigned arbitrarily. Number of
threads can be larger than the number of physical
processor cores. The programmer’s task is to ensure that
the threads access data correctly (using the shared
memory). Otherwise the results may be incorrect, for
example, because of the data race condition. OpenMP is
portable and scalable. Thanks to those features, programs
using this standard can be run on traditional desktop or
cluster computers.
 Special software has been written for the
implementation of massively parallel calculations in Nvidia
CUDA technology. The software measures the exact time of
running the algorithms. This is a dedicated software for the
measurement platform, which is described in detail in the
following section of this paper. Analysis of early version of
the algorithm written for CUDA showed that the number of
available Tesla K80 GPU work registers is insufficient to
fully load the GPU with computational tasks. To enable the
full use of all available CUDA cores, it was decided to
design the algorithm in a different way. The algorithm has
been divided into two separate CUDA kernels, launched
one after the other. This approach has significantly reduced
the consumption of the GPU work registers.
 The main task of the first kernel is to solve the ODE
system (1) using the R-K IV method given by (2). The first
kernel also performs a search for the local maxima of the
variable z in (1). The choice of variable z is not significant
and any of the remaining two variables x or y can also be
used. Those maxima are identified based on the value of
the 1k coefficient in (2). The maximum is found if

.0kand0k 1i,1i,1  

140 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 3/2019

The found maxima are stored in the global memory of
the CUDA device. They remain there until the second
kernel is launched. The task of the second kernel is to
identify the period based on the maxima previously stored.
 The software allows generation of two-parameter
bifurcation diagrams with theoretically unlimited resolution
and with any sizes (proportions of horizontal to vertical grid
points). However, the values defining the dimensions of the
computational task and, consequently, the vertical and
horizontal resolution values are not accidental. The total
dimensions of the computational task are calculated from
the following formula

partsAtpbAbpgAAdim 

 (3)
partsBtpbBbpgBBdim 

where: dimA and dimB define the total dimensions of the
computational task, bpgA and bpgB are the numbers of
CUDA calculation blocks inside the grid, tpbA and tpbB are
the numbers of threads in block, partsA and partsB denote
the dimensions of parts of the whole task.

Although the grid point sizes of the task can be arbitrary,
for aesthetic reasons it was assumed that dimA = dimB for
all cases (see Table 1). In order to compare the compu-
tational times of the parallel algorithms on the CPU and the
mass-parallel algorithm on CUDA devices, the dimensions
of the task for the CPU were adjusted to be the same as the
dimensions adopted for CUDA.

Parallelization of calculations on CPUs using OpenMP
has been achieved for each pair of varying parameters.
Each thread solves its own system of equations for the
given parameters, using the R-K IV method (2). In the next
step the maxima and period are determined. Another
method, not tested in this paper, that could also work well
for smaller problems (with dimension less than the number
of threads), is the parallelization of the method at the level
of solving the system of equations or determining the
maximum points. However, the smallest dimension of the
problem was 384x384, which significantly exceeds the
available number of physical cores. This does not require
parallelization at such a low level.

Description of the measuring platform
The measuring platform for all algorithms used in this

paper was a computational cluster installed at the Institute
of Computer Science, Opole University of Technology.

The massively parallel algorithm implemented by using
Nvidia CUDA technology was run on a computer with the
following hardware configuration: two fourteen-core
processors Intel(R) Xeon(R) CPU E5-2683 v3 2.0 GHz, 3 x
computing devices CUDA Tesla K80. Each device consists
of 2 GPUs. Each device had 4992 CUDA cores and 24 GB
of GDDR5 memory. The server also consists of 128 GB of
RAM and an SSD with a 1000MB/s write speed and
2000MB/s read speed. It is operating on the Windows
Server 2012 R2 64 bit operating system.

Calculations based on the OpenMP library were carried
out on the second server which consists of: two ten-core
processors Intel Xeon (2.3 GHz), 128 GB of RAM and SSD
(1000MB/s write speed and 2000MB/s read speed). It
operates under the Linux (Xubuntu 14.04) operating
system.

Selected measurement results
All time values obtained from our measurements are

given in seconds. A summary of the time values of all the
measurements is shown in Table 1. Three different
parameter matrix sizes have been used for computations:
384x384, 768x768 and 1152x1152.

TABLE 1: The time measurements

Case

Dimension of
the

computational
task

N

Computational times of
the algorithms (in sec)

OpenMP /
CPUs [s]

CUDA /
GPUs [s]

1 384 x 384 100 000 377.58 53.09
2 768 x 768 100 000 1470.04 226.64
3 1152 x 1152 100 000 3279.87 386.97
4 384 x 384 400 000 1519.08 195.78
5 768 x 768 400 000 5871.89 904.74
6 1152 x 1152 400 000 13159.54 1516.07

 For each of the matrix sizes, calculations were done for
all three combinations of parameters (for each pair of
variable parameters RL, RC and LC) with two values of the
integration steps. First, the number of integration steps was
N = 100,000, which corresponds to the time interval 0 ≤ t ≤
500 seconds. Then, the calculations were repeated for the
number of integration steps N = 400,000, which corresponds
to the time interval 0 ≤ t ≤ 2000 seconds. The number of all
calculation cases was 18.
 Factors having a significant impact on the algorithms
computational times were the dimension of the problem and
the number of integration steps. Therefore, the number of
cases in Table 1 was limited to 6. For all cases, the CUDA
based massively parallel algorithm was faster than a
competitive CPU based OpenMP algorithm.

Fig. 2. Comparison of CUDA and OpenMP times for case 6.

The biggest advantage of the CUDA algorithm over the
OpenMP algorithm was observed for case 6 from Table 1,
as shown in Fig. 2, where the CUDA algorithm was about 9
times faster.

Fig. 3. Diagram for variables RL and constant C=3.14 (N=100,000)

Two-parameter bifurcation diagrams

Two bifurcation diagrams were made for each pair of
parameters: RL, RC and LC. All presented diagrams have a

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 3/2019 141

resolution of 1152 x 1152. The diagrams for the third case
from Table 1 (Figs. 3,5,7 below) present an unsteady
solution of the system (1) for the instant t=500 seconds. The
number of integration steps N =100,000 was not large
enough for the system (1) to achieve steady state. The
application of a larger number of integration steps
(N = 400,000) in the sixth case from Table 1 (Figs. 4,6,8
below) allowed to obtain steady state solution, as these
three figures show the solution for the instant t=2000
seconds. Any further increasing of the number N do not
bring any change of the solution.

Fig. 4. Diagram for variables RL and constant C=3.14 (N=400,000)

Fig. 5.
Diagram for variables RC and constant L= 0.2 (N=100,000)

Fig. 6. Diagram for variables RC and constant L= 0.2 (N=400,000)

Fig. 7. Diagram for variables LC and constant R=15.0 (N=100,000)

Fig. 8. Diagram for variables LC and constant R=15.0 (N=400,000)

Conclusions

Obtaining two-dimensional bifurcation diagrams is a
very costly computation task. The use of a sequential
algorithm is practically impossible, so it is necessary to
implement calculations in parallel.
 The presented results of the computational times of
algorithms analyzed in this article indicate the high potential
of Nvidia CUDA technology in this type of computations.
The fact that each of the points of the bifurcation diagram is
calculated independently of the others is particularly
important. Thanks to this, there is no need for
synchronization or communication between threads working
on the GPU. In addition, due to a proper organization of
calculations, the solved task did not require large number of
massive and time expensive transfers between the host and
the CUDA device.

The use of the OpenMP library shows acceptable exe-
cution times. Independent calculation of each solution (each
point on the bifurcation diagram) and the lack of the need to
synchronize threads made it easy to implement a parallel
program.

Parallel algorithm based on CUDA technology in each
tested case was faster than parallel algorithms with the
OpenMP library. For the case with largest dimension of the
problem, it was about 9 times faster. However, an important
feature of the OpenMP algorithm is its simplicity and ease
of implementation. In contrast of this, the algorithm based
on CUDA was much more complicated. This is due to the
limited number of resources on the graphics card and their
appropriate use. Both parallel versions of the algorithm
allowed to obtain results for the chosen dimensions of the
tested algorithm in acceptable times.

142 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 3/2019

It should be noted that the parallel computing approach,
as well as the parallel computing technologies used in this
paper, may also be used in other chaos research.

The issue of creating dedicated expert systems is an
important element in most areas of electrical engineering,
computer science and electronics. An example of such
system is laid out in [13]. The research presented in this
paper can be further developed until it will be possible to
create expert system for designing and simulating chaotic
circuits.

Authors: mgr inż. Artur Pala, Politechnika Opolska, Instytut
Informatyki, Katedra Systemów Równoległych i Sztucznej
Inteligencji, ul. Prószkowska 76, 45-758 Opole, E-mail:
a.pala@po.opole.pl; mgr inż. Marek Machaczek, Politechnika
Opolska, Instytut Informatyki, Katedra Systemów Równoległych i
Sztucznej Inteligencji, ul. Prószkowska 76, 45-758 Opole, E-mail:
m.machaczek@po.opole.pl.

REFERENCES

 [1] R. F. Ammerman, T. Gammon, P. K. Sen and J. P. Nelson,
DC-Arc models and incident energy calculations, IEEE Trans.
Industry Appls., vol. 46, no. 5, pp. 1810–1819, Sept./Oct. 2010.

[2] V. N. Sydorets and I. V. Pentegov, Deterministic Chaos in
Nonlinear Circuits with Arcs, Kiev, Ukraine: Svarka, 2013 (in
Russian).

[3] I. V. Pentegov and V. N. Sydorets, Comparative analysis of
models of dynamic welding arc, The Paton Welding Journal,
vol. 12, pp. 45–48, 2015.

[4] W. Marszalek and H. Podhaisky, 2D bifurcations and Newtonian
properties of memristive Chua's circuits, EPL (Europhysics
Letters), vol.113, no. 1, 10005, 2016.

[5] W. Marszalek and J. Sadecki, 2D bifurcations and chaos in
 nonlinear circuits: a parallel computational approach, 15th Int.
 Conf. Synthesis, Modeling, Analysis and Simulation Methods
 and Applications to Circuit Design (SMACD), Prague (Czech
 Republic), 2-5 July 2018.
[6] W. Marszalek, Autonomous implicit models of pinched hystere-
 ses with application to memristors, Przegląd Elektrotechniczny,
 vol. 94, no. 4, pp. 13-16, 2018.
[7] S. C. Hapra and R. P. Canale, Numerical Methods for Engi-
 neers, McGraw-Hill, 2011.
[8] NVIDIA CORPORATION: Nvidia CUDA C Programming Guide,

Nvidia Corporation 2015
[9] NVIDIA CORPORATION: An Introduction to GPU Computing

and CUDA Architecture, Nvidia Corporation 2011
[10] D. B. Kirk, Wen-mei W. Hwu Programming Massively Parallel

Processors: A Hands-on Approach, Morgan Kaufmann, 2010.
[11]OpenMP, https://www.openmp.org/specifications/, 2018.
[12] OpenMP, https://computing.llnl.gov/tutorials/openMP/, 2018.
[13]A. Handkiewicz, P. Katarzyński, S. Szczęsny, M. Naumowicz,

M. Melosik, P. Śniatała, M. Kropidłowski, Design automation of
a lossless multiport network and its application to image
filtering, Expert Systems with Applications, vol. 41, no. 5, 2014.

