
138                                                                             PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 3/2019 

Artur PALA1, Marek MACHACZEK1 

(1) Opole University of Technology, Institute of Computer Science 
 

doi:10.15199/48.2019.03.31 
 

Parallel computing of two-parameter bifurcation diagrams of an 
electric arc model with chaotic dynamics using Nvidia CUDA 
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Abstract. This paper presents parallel and massively parallel calculations of two-parameter bifurcation diagrams of an electric arc model. A simple 
dynamical model of electric arc is used. Such a model can show complex two-parameter bifurcations with periodic and chaotic responses. Two 
different parallel computing technologies were used to implement the calculations. Parallel computations are implemented using the OpenMP library 
and CPU processors. Massively parallel computations are implemented using the Nvidia CUDA technology and GPU processors.  
 
Streszczenie. W artykule przedstawiono równoległe i masowo równoległe obliczenia dwuparametrycznych diagramów bifurkacyjnych dla modelu 
łuku elektrycznego. Do analizy wykorzystano dynamiczny model łuku elektrycznego z okresowymi i chaotycznymi odpowiedziami. Do realizacji 
obliczeń wykorzystano dwie różne technologie. Obliczenia równoległe zaimplementowano przy użyciu biblioteki OpenMP i procesorów CPU. 
Obliczenia masowo równoległe zostały zaimplementowane przy użyciu technologii Nvidia CUDA i procesorów GPU. (Równoległe obliczanie 
dwuparametrycznych diagramów bifurkacyjnych dla modelu łuku elektrycznego z wykorzystaniem technologii Nvidia CUDA i OpenMP). Równoległe 
i masowo równoległe obliczenia dwuparametrycznych diagramów bifurkacyjnych dla modelu łuku elektrycznego 
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Introduction 
This paper presents two-parameter bifurcation diagrams 

for a simple electric arc model. The bifurcation diagrams are 
understood as changes in the oscillatory solutions when two 
parameters of the analyzed electric arc model vary 
simultaneously. The goal is to obtain high resolution color 
diagrams showing various oscillatory and chaotic 
responses. However, obtaining such two-parameter 
diagrams requires solving the underlying system of ordinary 
differential equations (ODEs) many hundreds of thousands 
(or millions) of times. In each solution, in addition to solving 
the system of ODEs, it is necessary to find the local 
maxima, identify period of oscillation, or determine that the 
solution is chaotic or unstable. The final graphical 
representation of the identified solutions is the bifurcation 
diagram. Such a process of solving ODEs, identifying the 
type of response (i.e. period-n, chaotic or unstable) would 
be very time and memory consuming for large size of the 
two-parameter matrix values and, for those reasons, its 
sequential execution would not be obtainable in practice. 
The answer to this problem is the use of parallel 
programming. 

Parallel programming is an increasingly popular way of 
solving complicated problems. Parallel designed and 
implemented program code is characterized by a better use 
of resources and shorter computation time. Parallelization 
usually aims to shorten computation time by using more 
computing units, e.g. multiple cores and graphical 
processing units (GPUs). Many calculation problems have a 
sequential nature, that is, instructions are to be executed 
one by one and the next instruction depends on the 
previous one. Such difficulties are a serious limitation for 
the possibility of parallelizing the code. The code 
parallelization process can be further complicated by the 
specific hardware architecture, for example the GPU. 
Another limiting factor, when using a GPU, may be the 
amount of  available memory. 

In [1-3] typical models of electric arcs are presented. 
The models are based on various arc voltage-current (V-I) 
characteristics to be used to estimate energy in the case of 
an arc fault [1] and one-parameter bifurcation diagrams in 
[2,3]. Various V-I characteristics results in different 
nonlinear systems of ODEs serving as models of electric 
arcs. As shown in the literature, a small change in the value 

of a parameter (for example, resistor, inductor or capacitor) 
may lead to a significant change in the nature of the ODE 
system’s response [4]. Combining changes of two 
parameters may result in very complicated two-parameter 
bifurcation diagrams [5,6]. This is in fact the case for the 
electric arc circuit considered in this paper. 
  In this paper, we present bifurcation diagrams calculated 
for typical electric arc circuits shown in Fig. 1. Our diagrams 
are calculated for any pair of two parameters (from the 
three ones, R, L and C present in the arc circuits) changing 
simultaneously. 

 
Fig. 1. Two typical electric arc circuits. 
  

 The following is a system of ODEs for the two electric 
arc circuits shown in Fig. 1. The system on the left side of 
(1) describes the circuit A. On the right side of (1) a 
dimensionless form of the ODE system is shown [2]. 

 
 

)i
i

)U(i
u(

L

1

d

di






  

 

 
)xzy(

L

1

dt

dx m  

(1) 
)RiuE(

RC

1

d

du



 
 

 
→ )Rxy1R(

RC

1

dt

dy
  

 

)ii(
1

d

di 22
2





  

 

 
zx

dt

dz 2   

where:  i,
2
0

I/
2

iz,
0U
cu

y,
0I

i
x  , is the arc current, 

U0, I0  are two constants from the static arc voltage-current 



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 3/2019                                                                                       139 

V-I characteristic n
)

Io

i
(

0
U)i(U   and the constant n<0. 

Additionally, θ=/t is a time constant, R, L, C are the: 
resistance, inductance and capacitance, and the m constant 

results from the fact that 0
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as it follows from n
i)i(U    for n= ̶ 1/3. One can also 

consider the system of equations on the right side of (1), as 
the system on the left side with the unit values U0 = I0 =θ =1 
and E =RI0 +U0. By making an appropriate change of 
variables, the system (1) also describes the circuit B in 
Fig. 1 [2]. 
 

Calculation of bifurcation diagrams 
The bifurcation diagrams presented in this paper show 

the changes in the nature of the response of (1) when the 
pairs of parameters (R,L), (R,C) or (L,C) vary in certain 
intervals, as follows: Rmin ≤ R ≤ Rmax, Lmin ≤ L ≤ Lmax, 
Cmin ≤ C ≤ Cmax. When solving the system (1), two different 
time horizons were used, namely: 0 ≤ t ≤ 500 and 0 ≤ t ≤ 
2000. The initial conditions for all presented cases were the 
same and equal x(0)=0.5, y(0)=4.0, z(0)=1.0. The integration 
step in the Runge-Kutta method of order IV (R-K IV) was 
also the same in all cases and equal h = 0.005. 

The search for the local maxima of the ODE oscillatory 
solution of (1) and period identification were done in the 
interval 200 ≤ t ≤ 500 for the overall time horizon 0 ≤ t ≤ 500 
and in 1700 ≤ t ≤ 2000 for the time horizon 0 ≤ t ≤ 2000.  The 
period of oscillations was identified in the range from 1 to 16 
maximum values. That is, period-n oscillation means that 
there are n distinguished maximum values in one period, 
with n = 1 ,…,16. Any oscillatory response with the number 
of maximum values greater than 16 in one period was 
classified as period-16 type of response. If a chaotic 
response was identified, then such a response was also 
classified as period-16 type of response. Limiting of the 
identification of the type of response as period-1 to period-16 
does not seem to be a significant restriction, and one can 
easily consider an extension of the identification process to 
period-32 or even period-48 type of response. Each period-n 
type of response has been assigned a specific color on a 
bifurcation diagram. The color in the diagram was the 
lightest when the largest number of maxima was found in 
one period (that is if n=16) and the darkest when n was 
equal to 1. The absolute error tolerance value for comparing 
subsequent maxima values in the period identification 
process was tol = 0.0005. This value was determined 
empirically based on the observation of noise levels 
appearing in the obtained bifurcation diagrams. 
 
Implementation of parallel calculations 

The R-K IV method was used to solve system (1). This 
is the well-known and widely used method from a wide 
class of the ODE numerical algorithms. The method 
provides a good accuracy of computations with reasonably 
large values of integration steps. The algorithm of this 
method is expressed by the following formula [7] 

(2)  )kk2k2k(
6

1
xx 4321i1i         

where: i iteration counter, N,...2,1i  ; N assumed 
number of integration steps; 
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)t,x(f ii function of the right hand side of ODE; 

h value of the integration step;  t time variable 
 

Parallel computations were implemented on graphics 
cards using Nvidia CUDA technology and on standard CPU 
processors using the OpenMP library [8-12]. 
 Nvidia CUDA technology [8-10] is a massively parallel 
computing platform based on the use of GPUs. Thanks to 
the use of light thread technology, it is possible to effectively 
use a very large number of execution cores. Calculations on 
the CUDA platform are based on a heterogeneous 
processing model. This means that the CUDA device is 
installed in the host system as a separate computing 
subsystem having its separate resources. Performing 
calculations on the CUDA device always requires 
controlling done on the host side and copying data between 
the host and the CUDA device. The specific nature of the 
calculation process within the Nvidia CUDA technology 
makes it suitable for the implementation of very specific 
algorithms characterized by a high degree of parallelization, 
high computational complexity and operation on relatively 
large data sets. 
 OpenMP [11,12] is an API for writing parallel programs 
on multi-core processors with shared memory. This library 
can be used, among others, for C and C++ programming on 
various platforms (e.g. Windows, Linux). By using special 
instructions programmer decides which parts of the code 
will be executed in parallel. The code execution is 
parallelized by creating new threads (fork) that perform the 
tasks assigned to them. After completing their individual 
tasks, the threads merge (join) and the program is executed 
sequentially by the main thread. Master thread can be 
divided again at another place and the program will be 
executed in parallel. Threads can work with different loads, 
and their number can be assigned arbitrarily. Number of 
threads can be larger than the number of physical 
processor cores. The programmer’s task is to ensure that 
the threads access data correctly (using the shared 
memory). Otherwise the results may be incorrect, for 
example, because of the data race condition. OpenMP is 
portable and scalable. Thanks to those features, programs 
using this standard can be run on traditional desktop or 
cluster computers. 
 Special software has been written for the 
implementation of massively parallel calculations in Nvidia 
CUDA technology. The software measures the exact time of 
running the algorithms. This is a dedicated software for the 
measurement platform, which is described in detail in the 
following section of this paper. Analysis of early version of 
the algorithm written for CUDA showed that the number of 
available Tesla K80 GPU work registers is insufficient to 
fully load the GPU with computational tasks. To enable the 
full use of all available CUDA cores, it was decided to 
design the algorithm in a different way. The algorithm has 
been divided into two separate CUDA kernels, launched 
one after the other. This approach has significantly reduced 
the consumption of the GPU work registers.  
 The main task of the first kernel is to solve the ODE 
system (1) using the R-K IV method given by (2). The first 
kernel also performs a search for the local maxima of the 
variable z in (1). The choice of variable z is not significant 
and any of the remaining two variables x or y can also be 
used. Those maxima are identified based on the value of 
the 1k  coefficient in (2). The maximum is found if 

.0kand0k 1i,1i,1    
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The found maxima are stored in the global memory of 
the CUDA device. They remain there until the second 
kernel is launched. The task of the second kernel is to 
identify the period based on the maxima previously stored. 
 The software allows generation of two-parameter 
bifurcation diagrams with theoretically unlimited resolution 
and with any sizes (proportions of horizontal to vertical grid 
points). However, the values defining the dimensions of the 
computational task and, consequently, the vertical and 
horizontal resolution values are not accidental. The total 
dimensions of the computational task are calculated from 
the following formula 

partsAtpbAbpgAAdim   

 (3) 
partsBtpbBbpgBBdim   

where: dimA and dimB define the total dimensions of the 
computational task, bpgA and bpgB are the numbers of 
CUDA calculation blocks inside the grid, tpbA and tpbB are 
the numbers of threads in block, partsA and partsB denote 
the dimensions of parts of the whole task.  

Although the grid point sizes of the task can be arbitrary, 
for aesthetic reasons it was assumed that dimA = dimB for 
all cases (see Table 1). In order to compare the compu-
tational times of the parallel algorithms on the CPU and the 
mass-parallel algorithm on CUDA devices, the dimensions 
of the task for the CPU were adjusted to be the same as the 
dimensions adopted for CUDA. 

Parallelization of calculations on CPUs using OpenMP 
has been achieved for each pair of varying parameters. 
Each thread solves its own system of equations for the 
given parameters, using the R-K IV method (2). In the next 
step the maxima and period are determined. Another 
method, not tested in this paper, that could also work well 
for smaller problems (with dimension less than the number 
of threads), is the parallelization of the method at the level 
of solving the system of equations or determining the 
maximum points. However, the smallest dimension of the 
problem was 384x384, which significantly exceeds the 
available number of physical cores. This does not require 
parallelization at such a low level. 
 

Description of the measuring platform 
The measuring platform for all algorithms used in this 

paper was a computational cluster installed at the Institute 
of Computer Science, Opole University of Technology.  

The massively parallel algorithm implemented by using 
Nvidia CUDA technology was run on a computer with the 
following hardware configuration: two fourteen-core 
processors Intel(R) Xeon(R) CPU E5-2683 v3 2.0 GHz, 3 x 
computing devices CUDA Tesla K80. Each device consists 
of 2 GPUs. Each device had 4992 CUDA cores and 24 GB 
of GDDR5 memory. The server also consists of 128 GB of 
RAM and an SSD with a 1000MB/s write speed and 
2000MB/s read speed. It is operating on the Windows 
Server 2012 R2 64 bit operating system.  

Calculations based on the OpenMP library were carried 
out on the second server which consists of: two ten-core 
processors Intel Xeon (2.3 GHz), 128 GB of RAM and SSD 
(1000MB/s write speed and 2000MB/s read speed). It 
operates under the Linux (Xubuntu 14.04) operating 
system. 

Selected measurement results 
All time values obtained from our measurements are 

given in seconds. A summary of the time values of all the 
measurements is shown in Table 1. Three different 
parameter matrix sizes have been used for computations: 
384x384, 768x768 and 1152x1152. 

TABLE 1: The time measurements 

Case 

Dimension of 
the 

computational 
task 

N 

Computational times of 
the algorithms (in sec) 

OpenMP / 
CPUs [s] 

CUDA / 
GPUs [s] 

1 384 x 384 100 000 377.58 53.09 
2 768 x 768 100 000 1470.04 226.64 
3 1152 x 1152 100 000 3279.87 386.97 
4 384 x 384 400 000 1519.08 195.78 
5 768 x 768 400 000 5871.89 904.74 
6 1152 x 1152 400 000 13159.54 1516.07 

 

 For each of the matrix sizes, calculations were done for 
all three combinations of parameters (for each pair of 
variable parameters RL, RC and LC) with two values of the 
integration steps. First, the number of integration steps was 
N = 100,000, which corresponds to the time interval 0 ≤ t ≤ 
500 seconds. Then, the calculations were repeated for the 
number of integration steps N = 400,000, which corresponds 
to the time interval 0 ≤ t ≤ 2000 seconds. The number of all 
calculation cases was 18. 
 Factors having a significant impact on the algorithms 
computational times were the dimension of the problem and 
the number of integration steps. Therefore, the number of 
cases in Table 1 was limited to 6. For all cases, the CUDA 
based massively parallel algorithm was faster than a 
competitive CPU based OpenMP algorithm. 

 
Fig. 2. Comparison of CUDA and OpenMP times for case 6. 
 

The biggest advantage of the CUDA algorithm over the 
OpenMP algorithm was observed for case 6 from Table 1, 
as shown in Fig. 2, where the CUDA algorithm was about 9 
times faster.  
 

 
Fig. 3. Diagram for variables RL and constant C=3.14 (N=100,000) 
 
Two-parameter bifurcation diagrams 

Two bifurcation diagrams were made for each pair of 
parameters: RL, RC and LC. All presented diagrams have a 
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resolution of 1152 x 1152. The diagrams for the third case 
from Table 1 (Figs. 3,5,7 below) present an unsteady 
solution of the system (1) for the instant t=500 seconds. The 
number of integration steps N =100,000 was not large 
enough for the system (1) to achieve steady state. The 
application of a larger number of integration steps 
(N = 400,000) in the sixth case from Table 1 (Figs. 4,6,8 
below) allowed to obtain steady state solution, as these 
three figures show the solution for the instant t=2000 
seconds. Any further increasing of the number N do not 
bring any change of the solution. 

 
Fig. 4. Diagram for variables RL and constant C=3.14 (N=400,000) 

Fig. 5. 
Diagram for variables RC and constant L= 0.2 (N=100,000) 

 
Fig. 6. Diagram for variables RC and constant L= 0.2 (N=400,000) 

 
Fig. 7. Diagram for variables LC and constant R=15.0 (N=100,000) 

 
Fig. 8. Diagram for variables LC and constant R=15.0 (N=400,000) 
 
Conclusions 

Obtaining two-dimensional bifurcation diagrams is a 
very costly computation task. The use of a sequential 
algorithm is practically impossible, so it is necessary to 
implement calculations in parallel.  
 The presented results of the computational times of 
algorithms analyzed in this article indicate the high potential 
of Nvidia CUDA technology in this type of computations. 
The fact that each of the points of the bifurcation diagram is 
calculated independently of the others is particularly 
important. Thanks to this, there is no need for 
synchronization or communication between threads working 
on the GPU. In addition, due to a proper organization of 
calculations, the solved task did not require large number of 
massive and time expensive transfers between the host and 
the CUDA device. 

The use of the OpenMP library shows acceptable exe-
cution times. Independent calculation of each solution (each 
point on the bifurcation diagram) and the lack of the need to 
synchronize threads made it easy to implement a parallel 
program. 

Parallel algorithm based on CUDA technology in each 
tested case was faster than parallel algorithms with the 
OpenMP library. For the case with largest dimension of the 
problem, it was about 9 times faster. However, an important 
feature of the OpenMP algorithm is its simplicity and ease 
of implementation. In contrast of this, the algorithm based 
on CUDA was much more complicated. This is due to the 
limited number of resources on the graphics card and their 
appropriate use. Both parallel versions of the algorithm 
allowed to obtain results for the chosen dimensions of the 
tested algorithm in acceptable times. 
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It should be noted that the parallel computing approach, 
as well as the parallel computing technologies used in this 
paper, may also be used in other chaos research. 

The issue of creating dedicated expert systems is an 
important element in most areas of electrical engineering, 
computer science and electronics. An example of such 
system is laid out in [13]. The research presented in this 
paper can be further developed until it will be possible to 
create expert system for designing and simulating chaotic 
circuits. 
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