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Abstract. This work involves monitoring and non-destructive evaluation by inspecting two separate pieces (conductor and ferromagnetic). A 
database is established from the resolution of the direct problem. The inverse problem for the reconstitution of supposed single and multiple defects 
in the plates is then solved and analyzed. The study of the direct problem was made by exploiting the finite element method in resolution of the 2D 
magnetodynamic electromagnetic equation. Experimental Results are then performed and compared to simulation ones. The neural network 
technique was used successfully for the reconstruction of a single and multiple defects. 
 
Streszczenie. W pracy zaprezentowano monitorowanie i nieniszczące badanie dwóch elementów – przewodzącego i ferromagnetycznego. 
Rozwiązanie problemu odwrotnego wykorzystano do rekonstrukcji defektu. Wykorzystano też metodę elementów skończonych do rozwiązania 
równań elektromagnetycznych 2D. Wykorzystano też sieć neuronową do rekonstrukcji kształtu pojedynczego i wielokrotnego defektu. Nieniszczące 
badania ferromagnetycznego elementu metodą prądów wirowych 
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Introduction 

There is nowadays an increasing attention and request 
towards the study and development of systems and 
techniques for increasing the human safety and security in 
all aspects of the everyday life. In this framework, the 
possibility to perform a non-invasive inspection of structures 
or objects by means of non-destructive testing and 
evaluation (NDT-NDE) technologies is of particular interests 
in several applicative fields, ranging from civil engineering 
to biomedicine, up to aeronautic and nuclear industries [1]. 

In non-destructive test methods, eddy current techno-
logy increasingly gains in importance. The reason for this is 
that it is a test method that is flexible in its application and 
that its probes, usually coils of copper wire, are very adapt-
able and can be produced fairly easily [2]. Eddy current 
non-destructive evaluation (NDE) is a method based on the 
fact that when a coil powered by a variable energy source is 
brought near a conductive part, a change in impedance at 
the terminals of the coil is driven by the changing of 
magnetic field lines due to the existence and the distribution 
of induced currents in the conductive part [3]. 

Besides the inspection of metallic samples for which 
ECT has been applied for some decades to detect cracks, 
voids, corrosion and other defect typologies structures [4, 
5], this technique can also be used to distinguish between 
ferromagnetic and non-ferromagnetic materials. 

However, this technique does not allow access to 
accurate information that can characterize a defect in any 
form; this is why it is essential to dispose for a rapid tool for 
signal inversion as eddy current. For this, we are interested 
in an artificial neural networks. This technique is capable of 
solving complex problems using an artificial reasoning 
system constructed with basis on the human brain [6]. A 
calculation tool developed under Matlab environment was 
used. 

Simulation of direct problem with FEM 
 The relevant configurations is shown schematically in 
Fig. 1, consisting of a rectangular air core coil, an 
electrically conductive plate without a crack (a, b) and with a 
crack oriented along the x coordinate (c, d). 
 The work has two aspects; the first deals with the 
resolution of the direct problem, which solves the direct 
problem regardless of the complexity of the geometry of the 
studied system. The second deals with solving the inverse 
problem by exploiting neural networks while using 

databases from the direct digital model to achieve the 
desired parameters of the target. 

  

      

   

       
 

Fig.1. Studied electromagnetic configurations. 
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The first aspect has two approaches: 
The first deals with the comparison of two types of healthy 
plate (a non-ferromagnetic µr = 1 and the other 
ferromagnetic µr ≠ 1) – Fig. 1(a) and 1(b). 
The second deals with the detection of defects (single or 
multiple) in a ferromagnetic plate – Fig. 1(c) and 1(d). 

Table 1. Physical and geometrical parameters 
Sensor  Plate Default

Outer radius 
r1= 9 mm  

Length 80 mm (c) Length e0=6 mm 
  Depth 0.5 mm 

 
Inner radius  
r2= 2 mm 

Thickness 1.25 mm (d) Length e1=2 mm
   Depth 0.5 mm

Width 1.5 mm Conductivity: 
Non-ferromagnetic 37.7 

M S/m 
ferromagnetic 1 Ms/m 

-

Number of turns 
120 

Relative permeability 
1.2 

-

Frequency 
 1.4 - 1.6 kHz 

Lift-off 0.2 mm -

Current injected 
 1mA 

- -

 

Governing equations 
      The structures configurations with and without a crack 
are considered as shown in Fig. 1, where the source 
represents the exciting current in the coil, and the plate is 
the sample to be tested.  
      The eddy current problem can be described 
mathematically by the following partial differential equation 
in terms of the magnetic vector potential [7, 8]: 
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where: σ – the electrical conductivity [Ω.m]-1, µ – the 
magnetic permeability [H.m-1], ω=2πf – the angular 
frequency, f – the frequency of feeding, Jsz – the current 
density component along z direction. 
 
 The integration of equation 1 yields to the finite 
elements formulation of projective type below: 
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 Using the Green theorem and imposing boundary 
conditions of homogenous Direchlet type on the boundary 
of the studied domain, equation 2 becomes: 
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where: υ =1/µ, αi – screening function, αj – shape function 
associated with the node j. 
 Discrete shape functions are employed to recast the 
problem as a set of simultaneous algebraic equations, given 
by [9]: 
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where: [M] – stiffness matrix, [L] – dynamic matrix, [K] – 
source vector, [A] – vector of the unknown. 

Impedance computation 
      The coil impedance computation with and without the 
crack may be obtained using a general method based on 
the evaluation of the magnetic flux as indicated in equation 
6 and 7. [10] 
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where: Re (Z) and Im (Z) – the real and imaginary parts of 
the impedance of the coil respectively, N and S – the number 
of turns coil and the surface of the conductor respectively. 
 
Inverse problem resolution with neural networks 
      Artificial neural networks are non-linear data driven self-
adaptive approach. They are powerful tool for modeling, 
especially when the underlying data relationship is 
unknown. They are known for a few years with increasing 
success in various fields and they are widely used in 
nondestructive testing using eddy currents. The use of non-
conventional approaches for NDT, such as neural networks, 
is justified by the difficulty of finding a proper solution to this 
problem by using standard methods. The most widely used 
neural classifier is the Multi-Layer Perceptron (MLP) [7, 11].   
      For this work, the objective of this technique is the use 
of the impedance of the probe as input to neural network to 
identify and evaluate the shape of the crack towards the 
outlet of neural network. As regards the choice of the neural 
network model (network structure and the setting of internal 
parameters), which is an important step in the inversion 
process; a multilayer perceptron MLP was used for its 
intrinsic ability to perform highly complex tasks in a very 
short time. This choice was also supported by most of the 
literature. 

 
Fig. 2. Used network architecture 
 
      The neurons of each layer are connected with all the 
neurons of the previous layer. Nodes comprise the 
weighted sum of the nodes in the earlier layer passed 
through a transfer function, for example, the sigmoid 
function. The connection weights are the free parameters of 
a learning process. They are determined by presenting to 
the network a set of actual input-output values (the training 
set). During the learning process the network output and the 
desired output are compared through the error function 
called mean square error (MSE), calculated by [7, 12]. 
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where: [Ek] – input vector, [Dk] – desired output vector, [w] – 
constituted column vector of the set of the weights and bias 
of the network, S – the realised function by NN, N – number 
of samples in the training set. 

      Introduced network is a multi-layers perceptron called 
”Feed-forward”, it is a static network having two layers, a 
layer hidden from 8 neurons with a function of tangent 
sigmoid activation and an output layer in the single neuron 
with a function of linear activation Fig. 2. As in the most part 
of applications presented in literature, the size of hidden 
layer has to be heuristically determined. [13].  
      For its training we used the algorithm of Levenberg-
Marquardt which is an approximation of Newton’s method. If 
a function V(x) is to be minimized with respect to the 
parameter vector x, then Newton’s method would be [12]: 
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where:  xV2  – hessian matrix, )( xV  – gradient. 
 
Experimental set-up 
 The experimental system shown in Fig. 3 consists of an 
impedance analyzer, an EC sensor and a plate without 
defect. All other elements, the generator, the amplifier, the 
demodulator and the display, are mounted in a compact 
manner inside the AGILENT 4294A. 
 For the eddy current sensor, it is a single coil (double 
function), the measurement is absolute. The measured 
signal is the impedance of the coil which plays both the role 
of transmitter and receiver. 

 

 

Fig. 3. Measuring system 

 The impedance data of the coil were recorded using an 
impedance analyzer type "Agilent 4294A" . The impedance 
analyzer is a fairly accurate device that allows us to scan a 
wide range of frequencies ranging from 40 Hz to 110 MHz. 

It makes it possible to visualize and measure the modulus 
of the impedance |Z| (f1, f2,...) and the phase θ (f1, f2,...) of 
the coil / piece system in a determined frequency range. 
 The analysis is carried out for a fixed position of the 
plate with different frequencies (f=1,4kHz - 1,6kHz). The 
impedance values have been acquired for each value of the 
frequency. 

Results and discussion 
Validation of the faultless EF code 
  After solving the magnetodynamic partial differential 
equation using finite element program developed under 
Matlab package, as well as some experimental tests, the 
results obtained for the two kinds of materials are given in 
figure 4, in terms of impedance variation versus respect 
different values of the frequency (1.4 kHz-1.6 kHz). 
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Fig. 4. The impedance variation as function of frequency 
 
 In figure 5, the results representing the variation in 
relative value impedance of a ferromagnetic and non-
ferromagnetic material are presented. 
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Fig. 5. The impedance variation as function of frequency in relative 
value 

   Figure 6 gives the variation of the phase of the signal with 
respect to the frequency, which is measured in the 
impedance plane 
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Fig. 6. The phase variation as function of frequency 
 
 We observe that for each operating frequency 
corresponds a value of |Z|/Zmax and it is from there that we 
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can make the difference between the two materials. For  
exemple, f=1400 Hz, it can be seen that for a ferromagnetic, 
|Z|/Zmax represents an average of 87% of its value, and for 
a conductor an average of 91%. 

Surface defects detection 
  The simulation results obtained in case of single defect 
figure 1 (c) when considering a relative magnetic 
permeability of the plate μr= 1,2 and a value of electrical 
conductivity of 1 Ms/m, are given in terms of impedance 
variation (difference impedance) versus sensor position for 
different values of frequency (1,4 kHz, 1,5 kHz and 1,6 kHz) 
figure 7,  and for different values of the lift-off figure 8. 
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Fig. 7. The impedance variation as a function of sensor position for 
different values of frequency 

        The variation of the impedance as a function of sensor 
position reflects the variation of the distribution of properties 
in a test sample in the presence of defects. 
      The impedance changes depending on the position of 
the sensor for different values of lift-off for a sensor power 
supply frequency of 1.5 kHz. 
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Fig. 8. The impedance variation as function of sensor position for 
different values of lift-off 

     The lift-off describes the distance between the sensor 
and the plate. By varying the lift-off the magnetic coupling 
between the sensor and the plate decreases, and the 
influence of the plate on the sensor becomes less 
important. 
      Figure 9 gives the variation of the impedance for the 
electrical conductivity values ranging from 1 to 4 Ms/m. 
 When the conductivity of the plate is increased, the 
crack currents become larger. 
   Figure 10 gives the variation of the impedance for 
different values of relative magnetic permeability (1,2 to 
100) with a frequency of 1,5 kHz and an electrical 
conductivity of plate of 1 Ms/m. 

       When the relative magnetic permeability of the plate 
is varied, it is perceived that the µr disturbs the 

measurements and affects the correct detection of the 
defect. Figure 11 shows the results obtained in case of 
multiple defect 
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Fig. 9. The impedance variation as a function of sensor position for 
different values of electrical conductivity 
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Fig. 10. The impedance variation as function of sensor position for 
different value of relative magnetic permeability 
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Fig.11.The impedance variation as function of sensor position in 
case of multiple defects [Fig.1.d] 

Caracterisation of surface cracks 
       Methodologies to be adopted for defect feature 
identification by means of neural network on the basis of 
NDT are given below: 
1) Prepare data set for neural network from non-destructive 
tests. 
2) Develop neural network using MATLAB (choose a 
structure , number of inputs, number of outputs and number 
of layers and select transfer functions and a learning 
algorithm). 
3) Validation of results with respect to actual greatness. 
       The impedance of the eddy current probe is introduced 
as input to the neural network and the shape of the defect 
and its dimensions are measured by the output of the 
network figure 12. 
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Fig.12. Reconstruction of the depth and height of defect (single 
defects) 
 
 For this case, the resolution time is 8 seconds, the 
stopping criteria consists of a maximum number equals to 
1000 epochs, a minimum error gradient equal to 10E-12, 
and a minimum mean square error equals to 10E-10.       
    To test the robustness of the network, we have tried to 
reconstruct a series of defects, and the output of the neural 
network is given in figure 13. 
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Fig.13. Reconstruction of the depth and height of complex defect 
(multiple defects). 

 For this case, the resolution time is 10 seconds, the 
stopping criteria consists of a maximum number equals to 
1000 epochs, a minimum error gradient equal to 10E-12, 
and a minimum mean square error equals to 10E-11. CPU 
running frequency is 2,16 GHz with 2 Go RAM, and 
precision of data it's 32 bits. 

Conclusion 
     This work introduces the use of the neural networks 
technique for the reconstitution of defects in a ferromagnetic 
plate. This inversion technique has been validated for the 
reconstitution of a single and multiple defects occurring in 
the material. 
         The database is constructed from the resolution by 
finite element method of direct problem in terms of 
impedance variation of the sensor and is introduced as 
input values of the neural networks algorithm build under 
Matlab environment. The depth and the height of defects 
reconstitution is realized successfully and with much 

reduced time computation. After comparison with the real 
dimensions, the results seem to be in good agreement. 

For validation purpose of the finite element code (FE), 
comparisons of simulation and experimental are performed 
in first part for a non ferromagnetic and a ferromagnetic 
material, where a good agreement could be note. 
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