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Industrial processes control with the use of a neural 
tomographic algorithm 

 
 

Abstract. This paper presents the original Electrical Impedance Tomography (EIT) imaging algorithm in relation to physic-chemical processes of 
crystallization. Thanks to the developed method based on artificial neural networks (ANN), it was possible to develop an algorithm that could allow 
effective detection of crystals and other inclusions inside the reactor filled with non-Newtonian fluid. The neural controller contains a structure of 
independent neural networks. The number of ANNs corresponds to the resolution of the output image mesh.   
 
Streszczenie. W artykule przedstawiono oryginalny algorytm obrazowania z wykorzystaniem elektrycznej impedancji tomograficznej (EIT) w 
odniesieniu do fizykochemicznych procesów krystalizacji. Dzięki opracowanej metodzie opartej na sztucznych sieciach neuronowych (SSN) możliwe 
było opracowanie algorytmu, który umożliwiłby skuteczne wykrywanie kryształów i innych wtrąceń wewnątrz reaktora wypełnionego płynem 
nienewtonowskim. Sterownik neuronowy składa się z systemu niezależnych sieci neuronowych. Liczba SSN odpowiada rozdzielczości siatki obrazu 
wyjściowego. (Sterowanie procesami przemysłowymi z wykorzystaniem neuronowego algorytmu tomograficznego). 
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Introduction 
Process tomography is picking up in significance 

alongside innovative advancement [1], [2]. At present, a 
significant trend can be watched for the robotization of 
modern procedures, which is firmly identified with process 
control. The need to automate the control of innovative 
procedures is one of the fundamental purposes behind the 
dynamic improvement of IT information handling strategies 
[3], [4]. Simulation and experimental tests are an important 
condition for optimizing the control of processes carried out 
by liquid and suspension mixing systems that under certain 
circumstances can crystallize [5]. An example of such a 
substance is biodiesel.  

Common measurement tools used to quantify physico-
chemical processes, such as sensors and markers, are 
often characterized by evaluation capabilities limited to 
specific points. Due to the high degree of difficulty in 
modeling the mixing and heating processes of crystallizing 
substances [6], which are characterized by a distinct non-
Newtonian flow, traditional Computational Fluid Dynamics 
models do not provide a suitable basis for dimensioning 
mixing and heating systems, and therefore become 
useless. Classical models do not take into account 
granulometric parameters. The method of determining the 
rheological properties of liquids is difficult. In addition, 
traditional models used to simulate the mixing and heating 
of multiphase systems are still inaccurate [7], [8]. This fact 
may lead to misinterpretations, especially with regard to 
modeling and simulation of mixing and heating processes of 
non-Newtonian liquids, viscous and loaded with foreign 
particles. For this reason, reliable forecasts regarding the 
course of such processes are virtually impossible. 

The above-mentioned problems are an important reason 
to intensify efforts to develop an effective method of 
monitoring and supervising liquid crystallization processes 
[9]. Electrical impedance tomography (EIT) is a modality 
with high application potential [10]. It was assumed that 
having an appropriate tomograph, you can effectively 
monitor the course of physico-chemical processes, 
especially in the field of crystal formation in reactors or 
other similar tanks. Industrial processes are dynamic. 
Parameters such as temperature or stirring speed can be 
controlled over time. Thanks to the constant regulation of 
the above process parameters, you can keep the liquid in a 
completely liquid state, without inclusions and crystals, and 

at the same time minimize the cost of electricity 
consumption by reducing or eliminating maintenance 
activities to the necessary minimum. For example, if a given 
type of liquid should not be overheated, then the intensity of 
mixing at a lower temperature can be increased. In turn, 
fluids that can be heated can be less mixed. The effect will 
still be the same - prevention against the precipitation of 
crystalline structures. Adaptive industrial process control 
can be implemented using the appropriately selected EIT 
algorithm. 

There are many methods for solving numerical problems 
[11,12]. The main goal of the presented research is to 
develop an EIT controller built from many cooperating 
neural networks [13]. ANNs based on multilayer 
perceptrons were used in the study, which implied a 
supervised way of training the neural networks. For this 
reason, the presented method is included in the group of 
machine learning techniques [14], [15]. The task of the 
neural controller is to convert the input values of electrical 
signals into individual points of the reconstructed output 
image. The specific design of the controller makes the 
tomographic image output is generated pixel by pixel. 
Thanks to this, the image obtained at the exit quite well 
reflects the actual cross-section of the object under study 
[16]. The structure of the algorithm consisting of many 
separate neural networks makes it sensitive even to small 
inclusions contained in the liquid. Image resolution is also 
high. 

 
Method and model 

In this chapter a neural model enabling efficient 
reconstruction of tomographic images was presented. The 
model of reactor was filled with liquid. The simulation model 
could undergo crystallization because of changing physico-
chemical conditions. The main task of the EIT controller 
was crystals identification that were formed in the liquid. 

A distinctive feature of the presented model is the 
separate training of multiple neural networks in an amount 
equal to the resolution of the mesh of output images. The 
input vector of electrical measurements generated by 16 
electrodes placed around the reactor had 96 values of 
voltage drops. The resolution of the image output matrix 
was 2883 pixels. Each shade of the color displayed in a 
given element of the image mesh corresponds to a specific 
conductance value of the examined cross-section of the 
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real object. A schematic model of a tomography system 
based on multiple neural networks is shown in Fig. 1. 

 

 
Fig.1. A mathematical neural model for converting electrical signals 
into images 
 

Table 1 presents the method of dividing all data into 
three sets: training set, validation set and test set in the 
proportions: 70%, 15%, 15% respectively. In addition, Table 
1 also contains the results of the network learning process 
for a single pixel of the output image. The MSE (square root 
error) test set is a commonly used indicator of network 
learning quality. The smaller the MSE, the higher the quality 
of the network. If the R (regression) coefficient is close to 1, 
the fidelity of mapping of the neural network is high. R 
reflects the level of correlation between forecasting results 
and references. In the discussed case, MSE is low and R is 
relatively high. This proves a good quality of trained ANN. 

 
Table 1. Division of data into the sets and results of the training 
process 
 Samples MSE Regression (R) 
Training 24500 0.0254666  0.820920 
Validation 5250 0.0289041  0.798704 
Testing 5250 0.0285931  0.816868 

 
Fig. 2 shows the laboratory model of reactor. In the 

upper part of the bucket a specially designed installation 
was placed. This frame enables the suspension of pipe-
shaped elements immersed in water. Those elements are 
filled with powdered substance of a different conductance 
than the liquid in which they are immersed.  

 

 
Fig.2. The physical model of the reactor – top view (left) and side 
view (right) 
 

A suitable upper frame structure allows adjustment of 
the position of the tubular containers both relative to the 
reactor and relative to each other. You can also change the 
number of tubes immersed in a bucket. Around the reactor 
there are 32 sockets prepared for connecting the electrodes 
around the reactor. In the described tests, 16 electrodes 
were connected to the reactor using every other socket. 
Using the finite element method and the results of 

measurements obtained thanks to the physical model, a 
simulation algorithm was developed with the help of which 
35,000 training cases were generated. 

Fig. 3 shows a schematic of a single neural network 
generating a real number on the output. The value of the 
ANN output corresponds to the predicted conductivity of a 
given pixel on the reconstructed tomographic image grid. 
The structure of the neural network is MLP (multi-layer 
perceptron) with 96 input neurons, 1 hidden layer with 14 
neurons in the hidden layer and the one-neuron output 
layer. It is a regressive network. 

 
Fig.3. ANN that generates a single point of the output image 
 

Fig. 4 presents the course of the neural network training 
process. Each of the 3 lines indicate MSE values in 
particular iterations. Training was completed in the epoch of 
64 after the MSE for validation set had not decreased in the 
6 consecutive iterations. Fig. 4 corresponds to the MSE and 
R values shown in Table 1. 

 

 
Fig.4. Best validation performance (MSE=0.0289 at epoch 58) 

Fig. 5 shows the regression statistics for the testing set. 
The R=0.0816868 indicator corresponds to Table 1. The 
dotted line indicates the perfect match. The solid line 
corresponds to the averaged reconstructions obtained 
thanks to the multiply neural controller. 

 
Fig.5. Best performance for testing set 
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Results 
Fig. 6 and Fig. 7 present the results of a tomographic 

reconstruction of the selected case. Both figures have been 
divided into three parts. The upper parts present the 
reference images. It is important that the presented cases 
are reconstructions carried out on the testing set, which 
means that the presented measurements did not participate 
in the process of neural networks training. 
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Fig.6. EIT reconstruction example for 4 crystals 
 
Fig. 6 shows 4 large crystals visibly contrasting with the 

bright background. The positioned next to the drawing color 
bar allows to read the conductance values of specific image 
pixels. The conductance of background equals 1, while the 
conductance of pure crystals is close to 0. Effective 
supervising the crystallization process needs information on 

the degree of crystallization of the tested substance at a 
given time. To allow this, the percentage crystallization 
coefficient ߛ was created. It is calculated according to the 
formula (1). 

ߛ   (1) ൌ



ൈ 100% 

where: l – the number of mesh pixels denoting 
crystallization,  L – the mesh resolution 
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Fig.7. EIT reconstruction example for 1 central crystal 
 
Moreover, in order to enable a good comparison of the 

tomographic reconstruction with the reference (pattern), the 
quantitative crystallization coefficient deviation ∆ߛ was 
defined (2). 

ߛ∆   (2) ൌ ߛ| െ  |ோߛ
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where: ߛ – crystallization coefficient for given pattern, 
 .ோ – crystallization coefficient for proper reconstructionߛ 
 

In the second part of Fig. 6 and Fig. 7 you can see a 
reconstructed tomographic images created using a neural 
algorithms. Crystallization coefficient for 4-crystals 
reconstruction is ߛோ ൌ 13.5% and for 1-crystal reconstruction 
is ߛோ ൌ 7.4%. Comparing the crystallization coefficients ߛ 
(for pattern) with ߛோ (for reconstructions) we obtain a 
deviations respectively ∆ߛ ൌ 3% (for 4-crystals) and 
ߛ∆ ൌ 2% (for 1-crystal). 

Fig. 8 presents a histogram of deviations with Pareto line 
for the 1-crystal case (see Fig.7). The sorted histogram with 
Pareto line contains 5 bins of deviation ∆ߛ values that was 
sorted in descending order. The solid line denotes the total 
percentage of considered cases. The Pareto chart was 
created to highlight the most important factors in the 
considered data set. In this histogram those important 
factors are deviation values ∆ߛ for individual measuring 
cases. The Pareto chart is one of the most important quality 
control tools that helps to identify problems. 

 

Fig.8. Deviations histogram with Pareto line for 1-crystal case 
 

In Fig. 8 the Pareto line shows that (27 + 17) / 50 ≈ 88% 
of the deviations ∆ߛ come from 2 out of 5 = 40% bins. It 
could be noticed that in this case Pareto principle applies 
rather roughly. 

 

Conclusion 
The research results presented in this paper show that 

the use of a multiple EIT neural system to control 
crystallization processes can be effective. During the 
research, a neural network system that allows the 
reconstruction of tomographic images intended for the 
detection of crystals formed in a liquid filled reactor was 
developed. 

The logged indicators of the learning process of the 
selected neural network are the basis for stating that the 
developed neural tomography algorithm has the 
generalization ability. The developed algorithm is able to 
effectively reconstruct cases measured by the EIT method, 
which have not yet occurred in the set of training cases. This 
is a very valuable and desirable feature of the controller. 

The above predictions have been confirmed during 
numerous simulation experiments. The examination of the 
accuracy of the EIT predictor included several dozen cases 
that did not participate in the ANN training process. Two of 
those cases were illustrated in Fig. 6 and Fig. 7. Visual 
analysis of the chosen cases allow to accomplish that the 
reconstructions have some errors. However, they are not 
large enough to significantly distort the actual state of the 
investigated process.  

A crystallization coefficient for reconstruction ߛ  was 
developed. The above coefficient was defined in order to 
estimate the degree of liquid crystallization in the reactor. 

The quantitative nature of this parameter enables its use for 
the automation of technological processes. After calculating 
the separate mean deviations ∆ߛതതതതത for all cases used for 
testing, it turned out that generalized mean deviation 
തതതതതߛ∆ ൌ 1.7%. Therefore, having the large number of 
measurements, the mean deviation from the reference 
cases is small. This fact indicates a high potential for 
application of the neural tomographic algorithm. 
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