
252 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 12/2019

Rafał SIKORSKI1,2

Warsaw University of Technology (1), Institute of Aviation (2)

doi:10.15199/48.2019.12.57

Flexible multi-agent system for mobile robot group control

Abstract. Constant developments in robotics field lead to popularization of using mobile robots in different fields of application. Currently developed
solutions concentrate mainly on local robotic systems control. Because of wide spread robot use aside from reactive control a robotic system must
have social abilities (task planning and peer-to-peer negotiations) that are needed for efficient interacting of many heterogeneous units in one
environment. This paper proposes using Multi-Agent systems (MAS) as main model for building software systems for mobile robot groups control.
The approach limits basic shortcomings recognized in past applications such as fault tolerance, openness and scalability. Each autonomic agent
controls one mobile robot communicating with other agents using ACL messages. The system was realized based on JADE, a multi agent
Framework.

Streszczenie.Ciągły rozwój w dziedzinie robotyki doprowadził do popularyzacji wykorzystania mobilnych robotów w różnych dziedzinach
zastosowań. Aktualnie opracowywane rozwiązania koncentrują się głównie na lokalnej kontroli robotów. Ze względu na szerokie zastosowanie
robotów poza sterowaniem reaktywnym system robotyczny musi mieć umiejętności społeczne (planowanie zadań i negocjacje peer-to-peer), które
są potrzebne do efektywnego współdziałania wielu heterogenicznych jednostek w tym samym otoczeniu. Praca proponuje zastosowanie systemów
wieloagentowych (MAS) jako podstawy budowy systemu informatycznego przeznaczonego do kontroli grup robotów mobilnych. Podejście zapewnia
odporność na błędy, otwartość i skalowalność. Każdy z autonomicznych agentów steruje jednym robotem mobilnym oraz komunikuje się z innymi
agentami korzystając z wiadomości ACL. System zrealizowany został w oparciu o JADE, platformę Multi-Agentową. (Elastyczny wieloagentowy
system sterowania grupami robotów mobilnych).

Keywords: Mobile robots, Multi Agents, Java Agent Development Framework
Słowa kluczowe: Roboty mobilne, Multi Agent, JADE

Introduction

Modern robotics is dynamically growing field. New
findings help in mitigating hardware limitations like battery
capacity, relatively small electric motors power comparing
to their mass, cost of sensors just to name a few. Alongside
of hardware new software control solutions are constantly
developed. All those developments caused that mobile
robots are more widely used and more often we must deal
with not just one robot, but a group of devices that must
work simultaneously, communicate and cooperate with
each other.

Except of low-level control algorithms, most of the
control applications have their beginnings in field not
directly connected with robotics for example in desktop
applications, cloud computing [1]. To meet growing
demands on robots’ control, there is a need for solutions
integrating new programming trends into safe and reliant
multi robot systems. Created solutions must solve problem
of reactive control of single robot and long-term planning
and coordinating tasks in multi robot environment. A lot of
work in the field of robotics concentrates on developing low
level drivers designed for specific hardware solutions
largely ignoring the problem of managing large groups of
autonomous robots.

The paper describes a solution, built using multi agent
system (MAS) as high-level robot control system. System
uses previously developed tools like local path planning
based on Vector Field Plus (VHF+) [9], Adaptive Monte
Carlo Localization algorithm (AMCL) [7, 8], wave front path
planning [11] and specific hardware drivers. Proposed
system incorporates them in top layer multi agent system
for global intelligent task planning and robot interactions.
Inherent strengths of MAS systems as decentralization and
scalability may solve some of main problems of currently
used monolithic solutions. Using social purpose-oriented
agents, we can ensure solid, scalable and open architecture
of mobile robot control platform that will keep key features
of planning capability and quick reacting on local obstacles.

Mobile Agents
 There is no one clear definition of software Agent.
Generally, agent is described as special component of
software that is autonomic, behaves as a human in

servicing clients and seeks to realize its personal goals [2].
True agent is autonomic, has social capabilities, is reactive
and pro-active [3]. Agent is autonomic in the sense that he
must be able to act on its own without interacting with other
agents or humans. That implies that any agent has some
level of intelligence. Reactivity means that agent is a being
localized in real or virtual environment and has ability of
interacting with it. From computational perspective this
agent feature has crucial importance, it helps in
differentiating between agents and other kinds of software
like modules and objects. Pro-active agent constantly
observes the environment and based on that data tries to
perform some tasks based on obtained information. In
software development process that need means that there
is a need for including of central agent control thread.
Independently of used agent implementation method
important thing is that agent isn’t an object passively waiting
for actions performed on it but actively seeks to achieve the
main goal.
 Developed system is based on popular Java Agent
Development Framework [4]. The platform is fully FIPA [5]
compliant system designed to be a middleware for multi-
agent systems based on software agent paradigm. JADE
supplies graphical tools that support implementation,
debugging and deployment phases. It allows for building
systems distributed across multitude of machines that
ideally complies with requirement of system built from group
of autonomous mobile robots. Because JADE is based on
very popular Java language, creating new functionalities
and integration of already developed drivers and methods is
relatively easy.

The architecture of MAS
 Instead of building one big specialized application that
controls the whole system, approach proposed in the paper
splits system functionality between number of smaller self-
reliant software agents. Each agent assigned to one,
particular robot, controls its local behavior and can
communicate with rest of the robot population for
cooperation purposes.
 Each agent is fully autonomous, self-reliant and
proactive. Enclosed in its structure, agent has implemented
basic localization, path planning and decision-making

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 12/2019 253

algorithms. That allows for individual robot functioning even
without any other system components present. Agent uses
multi robot platform Player/Stage [6]. The platform provides
wide array of software drivers for popular mobile robots and
sensing devices. Thanks to that, multi agent system is
elastic and allows for easy adding of new types of robots to
the environment without the need of making modifications
to existing software agents.

Fig. 1 Robot control MAS architecture

 On top of that, each virtual agent has capability of
communicating with agents assigned to other robots inside
of the environment. The communication between agents is
realized with asynchronous ACL messages. Thanks to that
the system allows for high level task planning and group
action coordination.

Robot low level control
 Each software agent that is a part of proposed MAS
solution contains set of drivers that are responsible for low
level robot control. That solution ensures that even one
robot controlled by assigned to it software agent is capable
of autonomic functioning according to its paradigms. The
most important low-level drivers used in the solution are
shortly described below.

Adaptive Monte Carlo localization (AMCL) driver
 Current position of the robot is obtained with use of
Adaptive Monte Carlo localization method [7, 8]. AMCL
driver represents probability distribution with help of
particulate filter. Filter is adaptive, it dynamically adjusts
particles number. When position of the robot is unknown the
number of particles is increased, when position is well
known the number of particles is decreased. Robot
equipped with laser scanner, when moving supplies new
data that helps in localization process.
 Sample localization process is shown in figure 2.

Fig. 2 AMCL localization process

Vector Field Histogram Plus (VHF+)
Collision avoidance was achieved using Vector Field

Histogram Plus (VHF+) method [9], that is an evolution of
VHF algorithm first presented by Borenstein and Korem
[10]. Method allows robots to avoid obstacles in real time
with keeping current movement direction. VHF+ algorithm
builds a model of robot surroundings as two-dimensional
Cartesian pole histogram. Model is constantly updated
using sensors data. In VHF+ method we can distinguish
three main stages. In first software builds two-dimensional
pole histogram (fig. 3), it is created based on recorded
distances to obstacles.

Fig. 3. Sample vector field histogram for 180 segments

 X axis of histogram plot describes angle in degrees and
Y gives sums of elements of vector describing segment of
space. Histogram is built based on distance measurement.
Algorithm splits observable area to number of equal
segments. Next for each segment driver calculates angle
value between the segment and center of active area that
represents placement of the robot. The angle is calculated
according to equation:

௜,௝ߚ (1) ൌ ଵି݊ܽݐ ቀ
௬బି௬ೕ
௫೔ି௫బ

ቁ,

Where: ݔ௜ and ݕ௝ are placement of currently analyzed map

segment, ݔ଴ and y଴are coordinates of robot placement.
Next step is to calculate value of vector element
representing one segment of active area, chosen based on
calculated angle. Value of vector is calculated according to
equation:

(2) ݉௜,௝ ൌ ܿ௜,௝
ଶ ൫ܽ െ ܾ݀௜,௝

ଶ ൯,

where i and j mean currently considered map cell, c is the
value inside cell, a and b are constants, and d is distance
between current cell and center point of the robot.
 Second main step of VHF+ algorithm creates binary
polar histogram. It is achieved by setting threshold value, if
pole histogram line falls below threshold value it has zero
value on binary plot. If histogram value is greater than
threshold, value of one is assigned to that line. Third step
creates masked histogram plot taking into consideration
robot kinematic. That solution allows for choosing optimal
route for robots with constraints for example for robots not
capable of performing sharp turns.
 Lastly, algorithm identifies valleys in prepared binary
histogram plot, that means lines of histogram with zero
values. Angle values corresponding to valleys are identified
as potential new optimal obstacle avoidance orientation for
robot and further movement is changed appropriately.
 Algorithm allows for including robot physical dimensions
in calculations. It is achieved by extension of map cells
including detected obstacle by radius of the circle
corresponding with robot dimensions. That radius can be
increased by set value that additionally accounts for robot

254 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 12/2019

kinematic. That operation is needed for proper collisions
avoiding.

Wave front driver
 The Wave front driver realizes global path planning of
mobile robot. After obtaining new destination for the robot,
the path is planned from current position of the robot, that is
determined with subordinate AMCL localization driver. The
algorithm first creates configuration space dividing provided
map into set of cells [11].
 When planner gets new destination, the path is
determined starting from the target destination map cell.
Values are assigned first to cells adjacent to target and next
to the cells with increasing distance from destination
resembling the front of a wave on the water’s surface. The
following formula is used to assign value to each cell [12]:

(3)

,ሺ݅݌ܽ݉ ݆ሻ ൌ ቊ
݉݅݊൫݄ܾ݊݁݅݃݀݋݋݄ݎݑ݋ሺ݅, ݆ሻ൯ ൅ ݈݈݁ܥݕݐ݌݉ܧ					1

݈݈݁ܥ݈݁ܿܽݐݏܾܱ݄݃݊݅ݐ݋ܰ

 Here i, j are coordinates of the cell. Neighborhood (i,j)
represent the cell adjacent to the cell (i,j). When values are
assigned to all cells, robot starts movement choosing the
path consisting of cells with lowest cost values assigned to
them until reaching the target.

Platform implementation
 Combining those methods with available hardware
drivers provided with Player software (driver p2os), single
simulated robots is capable of most basic functioning of
localizing its position, path planning and real-time collision
avoidance. On top of that proposed system assigns
software agent to each robot for high level reasoning, group
coordination and task assignment. Simplified architecture of
the system is presented on below figure:

Fig. 4 Elastic multi-agent mobile robot platform architecture

 Each mobile robot has one software agent that is
assigned to it. Agent is constantly communicating with low
level drivers allowing for real time control of the robot.
Thanks to information procured from AMCL driver, Agent
knows actual position of the robot in the environment and
can reason based on that information. Data provided with
use of Wave front method returns to agent information
about estimated shortest route to assigned target position.
With this information the system is capable of coordinating
actions with rest of robot population and assigning the tasks
to the robots that can perform them most efficiently. Agent
can tell the robot to move to new target position. Then the
system automatically calculates shortest possible route
from current position to new target as a set of straight-line
sections. When moving to the target, robot tries to follow
planned route but if it comes across obstacle that is not part
of provided map file it can correct its route to avoid it and
still arrive to planned position. Additionally, Agent has full
access to provided by Player platform robot hardware
drivers. That allows direct access to all sensors and
actuators integrated with the robot.

 Platform is built in such a way that it allows for
functioning of many heterogeneous robots in the same
environment but is fully functioning also for single robot. To
add new robot to the group we just create new agent
instance to the JADE platform. When created, new agent
automatically registers itself into JADE platform Directory
Facilitator (DF) Server. From that point it is included in all
platform wide actions, thanks to communicating with other
agent present in the system with ACL messages.
 Communication between platform Agents is based on
FIPA-ContectNet protocol.

Fig. 5 FIPA-ContaractNet communication protocol [13]

 Big advantage of built system is its openness, scalability
and fault tolerance. Each agent populating the platform can
have its own internal logic governing its actions. Each agent
can be modified without impacting whole system
functioning. As stated before system allows for easy
integration of new robots or removing part of the population.
Adding new mobile robot with prepared earlier function
code can be done just by switching the robot on, creating
new instance of the Agent to JADE platform. Newly started
agent automatically registers itself into DF server and from
that point actively participates in all social activities.
 System is fault tolerant because each agent is separate
entity and can function independently of whole system
population. Whole system is distributed between mobile
robots. Fault occurring on any of the system components
may incapacitate single robot but will not impact functioning
of rest of the robot population. The MAS is fully distributed
system, there is no one crucial system element.

Simulation software
 Testing of the functioning of the platform was done with
use of robot simulation software Stage.

Fig. 6 Stage Multi robot simulation environment

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 12/2019 255

 Stage [5] is simulation software designed specifically for
use in testing multi robot systems. It provides virtual
environment for purpose of simulating robots, sensors and
different objects that robots can sense and interact with
them. It provides useful compromise between very
elaborate, exact robot simulators and minimalistic
simulations. Stage is realistic enough to allow for
transferring developed control software directly to physical
robots, additionally being fast enough to allow for testing of
big populations of robots.

Fig. 7Pioneer 2DX with Sick LMS200 laser scanner

 Tests were done simulating group of popular Pioneer
2DX mobile robots equipped with SICK LMS200 laser
scanner sensor (fig. 7). The choice was dictated by good
support of simulated hardware by both simulation software
and Player platform hardware drivers support.

Functional Testing of implemented MAS
 To check functioning of the proposed system, series of
different simulation scenarios were performed. Firstly,
testing had to prove that single robot controlled by software
agent is capable of correct functioning inside simulated
environment. Secondly, populating the simulation with
group of autonomous robots, the capabilities of social
interactions between them and coordinating their
functioning had to be tested.

Single robot tests
 Testing of single mobile robot controlled by software
agent functioning inside simulated environment largely
comes to proving, that it can move between assigned
positions with avoiding of potential collisions with other
objects on the way. To perform this task the robot must be
able to correctly estimate its current position, plan the
optimal route to assigned new position and when moving to
the target avoid any dynamic obstacles not being part of
predefined map.

Fig. 8 Simulated robot dynamic obstacle avoidance

 To check correctness and effectiveness of functioning of
localization and path planning with local obstacle
avoidance, several obstacles not being a part of
environment map were introduced at random locations.
 On figure 8 we can see example of path planning with
obstacles on the way. After assigning new target position to
the mobile robot waveform driver using current robot
position estimation data provided by AMCL, establishes
shortest route to the target and movement starts. The path
is planned as set of straight-line segments that give shortest
route to target based on the map layout. When obstacle, not
being part of the map, is met on the route, robot actively
avoids them using VHF+ method.
 Bottom half of figure 8 shows robot position estimated
based on sensor data and planned route. Top half of the
figure shows actual position and route of robot inside
simulation.
 As tests shown, when robot senses dynamic obstacle
on its planned route it will avoid it and reach target position.
The system is built in a way that allows for avoiding
dynamic obstacles including avoiding potential collisions
with other robots, keeping target position in memory. Tests
showed that robots being controlled by software agents
possess enough ability to successfully navigate the
environment.

Robot group testing
 To check social capabilities and high-level task
distribution functioning of the system a typical scenario of
leader-follower was tested using many robots. Figure 9
shows sample simulation with 20 robots populating the
environment.

Fig. 9 Simulation of 20 robots

 Part of the robots populating simulation had “wanderer”
type behavior. Their main task was, to randomly explore the
environment actively avoiding obstacles. Rest of robots had
a task of pursuing them. At each time only one “pursuer”
robot was to be assigned to each Wanderer.
 The robot pursuing each “wanderer” was chosen in
process of open auction based on FIPA-ContaractNet
communication standard. All “pursuer” robots using ACL
messages, send their calculated route to all of the
“wanderers” that can make decision basing on that
information. Only the robot that has shortest route to catch
up with target robot starts movement. The whole process is
cyclical because of the dynamic character of the task.

256 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 12/2019

“Wanderer” robots are in constant movement. Tests were
done with big robot populations up to 20 simultaneously
functioning robots. Figure 10 shows simplified system
components interactions.

Fig. 10 UML diagram - system elements interaction

 Tests proved that robots controlled by software agents
can successfully communicate and coordinate their actions.
Series of simulations with different number of different type
agents were performed. In each case robots were able to
correctly negotiate task assigning and efficiently performed
programmed functions.
 The big advantage of the MAS system is its openness
and elasticity compared with other system approaches.
Adding or removing new robots is relatively easy. New
agent introduced to the simulation automatically registered
itself in DF Server accessible by all other agents. From that
point it started actively participating in all platform-wide
actions. Similarly removing any of the robots’ form
environment, for example simulating fault, did not disturb
functioning of the rest of MAS.
 Performed tests included adding new robots and
simulating critical failures of already registered robots
without stopping of the simulations. As tests proved the
system is fully distributed. There is no one crucial element
of proposed MAS. Potential fault of any of the system
components or introduction of totally new agent type does
not disturb function of the system. Newly added robots,
after introduction to simulation started performing their tasks
and actively took part in task assigning process. Robots

with simulated fault after stopping were simply excluded
from task assigning auction and didn’t negatively affect rest
of population.

Conclusion
 This paper proposes using MAS architecture as a basic
framework for multi robot control systems. For that purpose,
a complex MAS system responsible for local robot control,
communication and high-level reasoning was created and
tested. Software Agents populating the platform were able
to efficiently control assigned robots and coordinate their
functioning for performing platform wide tasks requiring task
assigning and social interactions between robots.
Performed tests confirmed assumptions about potential
benefits of the MAS approach as scalability, openness and
fault tolerance.
 Agent oriented programming and MAS systems are the
future of software engineering. Object-oriented
programming does not provide all the benefits that are
inherent to software agent paradigm. Relatively easy
implementation of MAS systems and integrating them with
now widely available and proven low-level mobile robots’
drivers makes the proposed approach a very attractive
alternative to currently used more rigid object-oriented
systems.

Author: Rafał Sikorski
Institute of Theory of Electrical Engineering, Measurement and
Information Systems, Faculty of Electrical Engineering, Warsaw
University of Technology, Pl. Politechniki 1, 00-661 Warsaw
Lab Maintenance and Development, Institute of Aviation,
Al. Krakowska 110/114, 02-256 Warsaw
E-mail: rafal.sikorski.dokt@pw.edu.pl

REFERENCES
[1] Rogoza W. , Zabłocki M. Grid computing and Cloud

computing In scope of JADE and OWL based Semantic Agents
– A Survey, Przegląd Elektrotechniczny, 90 (2014), nr 2, 93-96

[2] Wooldridge M., Jennings N.R.: Intelligent Agents: Theory and
Practice, The Knowledge Engineering Review, 10(2) (1995),
115-152

[3] Bellifemine F., Caire C., Greenwood D.: Developing Multi-
Agent Systems with JADE, John Wiley&Sons Ltd., 2007

[4] Java Agent Development Framework Home page. URL:
http://jade.tilab.com

[5] The Foundation for Intelligent Physical Agents Home page.
URL: www.fipa.org

[6] The Player Project Home page. URL:
http://playerstage.sourceforge.net/

[7] Frank, D., Burgard, W., Dellaert, F., Thrun, S.: Monte carlo
localization: efficient position estimation for mobile robots. In:
Proceedings of the National Conference on Artificial
Intelligence and the Innovative Applications of Artificial
Intelligence Conference. AAAI ’99/IAAI ’99, American
Association for Artificial Intelligence, pp. 343–349 (1999)

[8] Fox, D.: Adapting the sample size in particle filters through kld-
sampling. I. J. Robotic Res. 22(12) (2003), 985–1004

[9] Jaskot, K., Knapik K.: Budowa mapy otoczenia z
wykorzystaniem grupy robotów mobilnych, Przegląd
Elektrotechniczny, 90 (2014), nr 12,30-39

[10] Borenstein J., Koren Y.: Histogramic in-motion mapping for
mobile robot obstacle avoidance, IEEE Transaction on
Robotics and Automation, vol. 7, nr. 4, (1991) 535–539.

[11] Pal, A., Tiwari, R., & Shukla, A.: A focused wave front algorithm
for mobile robot pathplanning. In Hybrid Artificial Intelligent
Systems, Springer Berlin Heidelberg. (2011) 190-197

[12] Ghai, Bhavya & Shukla, A. (2016). Wave Front Method Based
Path Planning Algorithm for Mobile Robots. 10.1007/978-3-
319-30927-9_28, 2016

[13] FIPA Contract Net Interaction Protocol Specification. URL:
http://www.fipa.org/specs/fipa00029/SC00029H.

