Sparse representation of a non-stationary signal in compressive sensing technique

Abstract. The paper presents the application of the compressive sensing technique to reconstruct a non-stationary signal based on compressed samples in the time-frequency domain. A greedy algorithm with different dictionaries to seek sparse atomic decomposition of the signal was applied. The results of the simulation confirm that the use of compressive sensing allows reconstruction of the non-stationary signal from a reduced number of randomly acquired samples, with slight loss of reconstruction quality.

Streszczenie. Przedstawiono zastosowanie techniki oszczędnego próbkwania do rekonstrukcji sygnału niestacjonarnego na podstawie skompresowanych próbek w dziedzinie czas-częstotliwości. Zastosowano nadmierowy algorytm z różnymi słownikami aby znaleźć rzadką reprezentację sygnału. Wyniki symulacji potwierdzają, że zastosowanie oszczędnego próbkwania pozwala na rekonstrukcję sygnału niestacjonarnego z małej liczby losowo pobranych próbek, z niewielką utratą jakości rekonstrukcji. (Rzadka reprezentacja sygnału niestacjonarnego w technice oszczędnego próbkwania).

Keywords: sparse representation, non-stationary signal, compressive sensing.

Streszczenie: nieciągłość w technice oszczędnego próbkwania. Zastosowano nadmiarowy algorytm z różnymi słownikami aby znaleźć rzadką reprezentację sygnału. Wyniki symulacji potwierdzają, że zastosowanie oszczędnego próbkwania pozwala na rekonstrukcję sygnału niestacjonarnego z małej liczby losowo pobranych próbek, z niewielką utratą jakości rekonstrukcji. (Rzadka reprezentacja sygnału niestacjonarnego w technice oszczędnego próbkwania).

Abstract: The paper presents the application of the compressive sensing technique to reconstruct a non-stationary signal based on compressed samples in the time-frequency domain. A greedy algorithm with different dictionaries to seek sparse atomic decomposition of the signal was applied. The results of the simulation confirm that the use of compressive sensing allows reconstruction of the non-stationary signal from a reduced number of randomly acquired samples, with slight loss of reconstruction quality.

Streszczenie: Przedstawiono zastosowanie techniki oszczędnego próbkwania do rekonstrukcji sygnału niestacjonarnego na podstawie skompresowanych próbek w dziedzinie czas-częstotliwości. Zastosowano nadmierowy algorytm z różnymi słownikami aby znaleźć rzadką reprezentację sygnału. Wyniki symulacji potwierdzają, że zastosowanie oszczędnego próbkwania pozwala na rekonstrukcję sygnału niestacjonarnego z małej liczby losowo pobranych próbek, z niewielką utratą jakości rekonstrukcji. (Rzadka reprezentacja sygnału niestacjonarnego w technice oszczędnego próbkwania).

Przedstawiono zastosowanie techniki oszczędnego próbkwania do rekonstrukcji sygnału niestacjonarnego na podstawie skompresowanych próbek w dziedzinie czas-częstotliwości. Zastosowano nadmiarowy algorytm z różnymi słownikami aby znaleźć rzadką reprezentację sygnału. Wyniki symulacji potwierdzają, że zastosowanie oszczędnego próbkwania pozwala na rekonstrukcję sygnału niestacjonarnego z małej liczby losowo pobranych próbek, z niewielką utratą jakości rekonstrukcji. (Rzadka reprezentacja sygnału niestacjonarnego w technice oszczędnego próbkwania).

Keywords: sparse representation, non-stationary signal, compressive sensing.

Streszczenie: nieciągłość w technice oszczędnego próbkwania. Zastosowano nadmiarowy algorytm z różnymi słownikami aby znaleźć rzadką reprezentację sygnału. Wyniki symulacji potwierdzają, że zastosowanie oszczędnego próbkwania pozwala na rekonstrukcję sygnału niestacjonarnego z małej liczby losowo pobranych próbek, z niewielką utratą jakości rekonstrukcji. (Rzadka reprezentacja sygnału niestacjonarnego w technice oszczędnego próbkwania).

Abstract: The paper presents the application of the compressive sensing technique to reconstruct a non-stationary signal based on compressed samples in the time-frequency domain. A greedy algorithm with different dictionaries to seek sparse atomic decomposition of the signal was applied. The results of the simulation confirm that the use of compressive sensing allows reconstruction of the non-stationary signal from a reduced number of randomly acquired samples, with slight loss of reconstruction quality.

Streszczenie: Przedstawiono zastosowanie techniki oszczędnego próbkwania do rekonstrukcji sygnału niestacjonarnego na podstawie skompresowanych próbek w dziedzinie czas-częstotliwości. Zastosowano nadmiarowy algorytm z różnymi słownikami aby znaleźć rzadką reprezentację sygnału. Wyniki symulacji potwierdzają, że zastosowanie oszczędnego próbkwania pozwala na rekonstrukcję sygnału niestacjonarnego z małej liczby losowo pobranych próbek, z niewielką utratą jakości rekonstrukcji. (Rzadka reprezentacja sygnału niestacjonarnego w technice oszczędnego próbkwania).

Keywords: sparse representation, non-stationary signal, compressive sensing.
random measurement matrices, such as the random Gaussian matrix and the Bernoulli matrix, and the deterministic measurement matrices, such as the Fourier matrix, the Hadamard matrix, and the Toeplitz matrix [8].

Finally, the reconstruction process model is described as follows [7]:

\[
(3) \quad \hat{a} = \arg \min \|a\| \quad \text{subject to } y = \Theta \cdot a
\]

where: \(\hat{a} \) – the estimate of \(a \), \(\|a\| \) – denotes the \(l_1 \) norm of \(a \).

The most common used reconstruction algorithms for the above sparse signal recovery are the greedy algorithms, that solve the reconstruction problem by finding the answer iteratively [8]. The widely used algorithm is matching pursuit (MP), especially when the signal is highly sparse, then the MP procedure has a low implementation cost and high speed of recovery [9].

Time–frequency dictionary and MP algorithm

The aim of the reconstruction algorithm is to find the \(K \) non-zero coefficients of \(a \) which subjects to (2), on condition that \(a \) is \(K \) – sparse representation of the signal. An approximation of a compressively sampled signal \(y \) is obtained using a linear expansion of atoms \(g_{\gamma,n} \) selected from a complete and redundant time-frequency dictionary \(\Theta \) as [11]:

\[
(4) \quad y = \sum_{n=1}^{M} a_n g_{\gamma,n}
\]

where: \(a_n \) – a sparse coefficient of the signal in time frequency domain.

The dictionary \(\Theta \) is the reconstruction matrix expressed as follows [12]:

\[
(5) \quad \Theta = \begin{bmatrix} G_{g_{\gamma,1}} & \cdots & G_{g_{\gamma,N}} \\ \vdots & \ddots & \vdots \\ G_{g_{\gamma,1}} & \cdots & G_{g_{\gamma,N}} \end{bmatrix}
\]

and the \(i-th \) column of the matrix \(\Theta \) is defined by [12]:

\[
(6) \quad g_{\gamma,n} = [G_{g_{\gamma,1}} G_{g_{\gamma,2}} \cdots G_{g_{\gamma,N}}]^T
\]

The Gaussian chirplet atom \(g_{\gamma,n} \) is a chirp function modulated by a Gaussian envelope, expressing with four-parameter \((f_n, \omega_n, \sigma_n, \beta_n)\), where \((f_n, \omega_n)\) denotes the time-frequency center of the chirplet, \(\sigma_n \) is the Gaussian envelope’s standard deviation and \(\beta_n \) specifies the chirp rate. When the chirp rate \(\beta_n \) is equal to zero, the elementary function is taking shape of the Gaussian pulse. In practice, the MP, based on the chirplet dictionary, has better resolution than the Gaussian pulse [5]. Furthermore, the convergence rate of the MP algorithm based on the chirplet is faster than one based on the Gaussian dictionary.

Then, rewrite (2) as follows:

\[
(7) \quad y = a \cdot g_{\gamma,n}(1) + a_2 \cdot g_{\gamma,n}(2) + \cdots + a_M \cdot g_{\gamma,n}(M)
\]

Starting with a null initial model, MP algorithm iteratively builds up an approximation by adjoining at each stage an atom, which best correlates with the current residual signal \(R^y \) (see Tab. 1). The procedure is implemented iteratively until \(\|R^y \cdot y\| \) reaches a predefined threshold or \(M > K \).

Then, the decomposition coefficients can be described by:

\[
(8) \quad \hat{a} = \langle R^y, g_{\gamma,n} \rangle, \quad n = 0, 1, \ldots, M - 1
\]

The theorem introduces a necessary condition for correct reconstruction regarding the minimum number of measurements to be acquired. It can be shown that, under the assumption of the restricted isometry property (RIP), the number of random samples \(M \) is such that [13]:

\[
(9) \quad M \geq C \cdot K \cdot \log \left(\frac{N}{K} \right)
\]

where: \(C = \frac{1}{2} \log (\sqrt{24} + 1) \approx 0.28 \).

Table 1. The MP procedure

<table>
<thead>
<tr>
<th>Initialization</th>
<th>The residual vector is initialized with measurement vector (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i = 0)</td>
<td>(R^y \cdot y = y)</td>
</tr>
<tr>
<td>Atom search</td>
<td>This step finds a column of reconstruction matrix which is maximally correlated with the residual vector</td>
</tr>
<tr>
<td>(g_{\gamma,n})</td>
<td>(g_{\gamma,n} = \arg \max_{a_n}</td>
</tr>
<tr>
<td>(R^a \cdot y = R^y - \langle R^y, g_{\gamma,n} \rangle g_{\gamma,n})</td>
<td></td>
</tr>
<tr>
<td>Update sparse solution</td>
<td>The signal (\Phi) is expressed as a sum of atoms that best fit its residues</td>
</tr>
<tr>
<td>(i = M - 1)</td>
<td>(y = \sum_{j=1}^{N} \langle R^y, g_{\gamma,n} \rangle g_{\gamma,n} + R^y \cdot y)</td>
</tr>
</tbody>
</table>

Simulation

Simulations were carried out using the program, which was created based on available programs in the LabVIEW environment [14, 15]. It applies a compressive sensing algorithm to recover the signals from a set of single random (scalar) samples, where the signal is \(K \) – sparse in a time – frequency domain. Each measurement (sample) represents a random projection of the signal onto a single scalar value. Taking into consideration the basic compressive sensing equation (2), the elements of \(y \) are given by:

\[
(10) \quad y = \langle \phi, x \rangle = \sum_{j=0}^{N-1} \phi_{j,n} \cdot x_j
\]

where: \(\phi_{j,n} \) the \((j,i)\)th entry of the random binary matrix \(\phi \), generated by a pseudorandom pattern of ones and zeros that guarantees the Bernoulli distribution.

The following equation defines the probability function of the Bernoulli noise [16]:

\[
(11) \quad P[\phi_{j,n} = z] = p^z \cdot (1 - p)^{1-z}, \quad z \in \{0, 1\}
\]

where: \(p \) - the ones probability, which means, e.g. if \(p \) is equal to 0.1, each element of Bernoulli noise has a 10% chance of being one and a 90% chance of being zero.

The original signal \(x \) consists of two different components: one is a sinusoid of high concentration in the frequency domain and the other is the sum of three damped sinusoids of fine localization in the time. The time-frequency (sparse) domain results for different number of atoms, used in the signal representation are shown in Fig. 2.

The percentage of tested signal’s variance (energy) explained by the CS reconstruction defines the accuracy of the reconstruction. To study the effect of noise background,
a white Gaussian noise is added at two different signal-to-noise ratio (S/N), 3 dB and 20 dB. Fig. 3 shows results of sparse reconstruction for 70 iterations (measurements) under each noise level. The recovered signal explains about 70% of the signal total energy in the presence of weak noise. In the case of strong noise, the accuracy of CS decomposition is significantly decreasing.

The signal convergence in the sparse domain presents Fig. 4. In the weak noise case, the original signal is well recovered (see Fig. 4a). In the second case, noise contaminates the spectrogram (see Fig. 4b). However, the major time-frequency structures still matches with the true one shown in Fig. 2. A more accurate reconstruction for a noisy signal can be reached by increasing the number of random samples (measurements) in the CS acquisition or the number of atoms used to expand the signal in the MP algorithm.

Fig. 2. An adaptive spectrogram of a tested signal for sparsity level equal to 10 (a), 6 (b)

Fig. 3. The waveforms of: tested signal (a), noise convoluted sparse signal (b), sparse representation (c) for S/N equals 3 dB. The waveforms of: tested signal (d), noise convoluted sparse signal (e), sparse representation (f) for S/N equals 20 dB

Fig. 4. An adaptive spectrogram of a reconstructed signal for S/N equal to 3 dB (a) and 20 dB (b)

Concluding remarks

The paper presents a short review of sparse representation of non-stationary signal in time-frequency domain. It describes the implementation of CS reconstruction by MP algorithm. Although MP is a heuristic procedure, it affords comparable and more accurate results in recovering the noiseless signal. In the noisy signal reconstruction case, MP processing contains errors that may be unacceptable. The convergence of the MP decomposition is not dependent on the type of atom used. The results demonstrate that the reconstruction of a non-stationary signal can be effectively performed from a small set of random measurements. The dimension of the measurement matrix affects the accuracy of the reconstruction process.

Authors: dr inż. Beata Pałczyńska, Politechnika Gdańska, Katedra Metrologii i Systemów Informacyjnych, ul. Narutowicza 11/12, 80-233 Gdańsk, E-mail: beata.palczynska@pg.edu.pl, dr hab. inż. Dariusz Świsłucki, Politechnika Gdańska, Katedra Metrologii i Systemów Informacyjnych, ul. Narutowicza 11/12, 80-233 Gdańsk, E-mail: dariusz.swisulski@pg.edu.pl.

REFERENCES