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An improved local search involving bee colony optimization 
using lambda iteration combined with a golden section  
search method to solve an economic dispatch problem 

 
 

Abstract. This paper presents an improved local search method using bee colony optimization (ILS-BCO) to solve an economic dispatch (ED) 
problem with smooth cost function characteristic. The proposed ILS-BCO algorithm is an integration of lambda iteration and bee colony optimization 
(CLI-BCO) combined with golden section search and bee colony optimization (CGS-BCO). To show its effectiveness, the ILS-BCO was applied to 
test two systems consisting of either 6 or 15 power generating units. Results confirm that the proposed ILS-BCO approach is capable of obtaining 
rapid convergence and a high quality solution efficiently. 
 
Streszczenie. W artykule zaproponowano metodę rozwoiązywania problemu ekonomicznego rozsyłu energii z uwzględnieniem kosztów. 
Wykorzystano metodę optymalizacji opartą na algorytmach rojowych. Metodę przetestowano na dwóch systemach złożonych z 6 lub 15 jednostek 
generatorów. Ulepszona metoda rozwiązywania problemu ekonomicznego rozsyłu energii wykorzystująca algorytmy rojowe i Iterację 
lambda  
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Introduction 
The operating cost of a power plant mainly depends on 

the fuel cost of generators which is minimized via economic 
dispatch. The Economic Dispatch (ED) problem is one of 
the fundamental issues in power system operation. The 
main objective is to reduce the cost of energy production 
taking into account transmission losses while satisfying 
equality and inequality constraints. The rational distribution 
of economic load between running units can lead to 
significant cost savings making it important to research the 
economic dispatch problem. 

Several classical methods, such as the lambda iteration 
method [1], quadratic programming [2], the gradient method 
[3], dynamic programming [4], linear programming [5], and 
nonlinear programming [6] have been applied to solve ED 
problems. However, these methods are not feasible in 
practical power systems owing to the non-linear 
characteristics of the generators. Solutions can be limited to 
achieving a local optimum which leads to less desirable 
performance. In addition, these methods often use 
approximations to limit complexity. Recently, a number of 
researchers have used meta-heuristic optimization 
techniques, which are unlike conventional mathematical 
techniques, to solve ED problems in power systems. 
Different meta-heuristic approaches have proved to be 
effective with promising performance, such as a Genetic 
Algorithm (GA) [7]-[9]. Such methods have been inspired by 
the Darwinian law of optimal survival of a species, Particle 
Swarm Optimization (PSO) [10]-[12] inspired by the social 
behavior of bird raising or fish production, Ant Colony 
Optimization (ACO) [13]-[14] inspired by food habits in an 
ant colony, and by Tabu Search (TS) [15] as a way to build 
a better foundation from prior knowledge. This latter method 
records previous answers and forbids the new solution to 
converge at the same point for different input data. Other 
methods to be used include the Cuckoo Search Algorithm 
(CSA) [16]-[17] which is based on the parasitic behavior of 
some cuckoo species and the flight behavior of some birds 
and insects. The Shuffled Frog Leaping Algorithm (SFLA) 
[18]-[19], which simulates and mimics the behavior of frogs 
that find food placed on random rocks, has also been used. 
Simulation Annealing (SA) [20]-[21], which finds a solution 
from a new perspective and which moves to a new location 

when the solution value is better than the original, has also 
been employed. Finally, Bee Colony Optimization (BCO) 
[22]-[24], where the BCO algorithm mimics the food 
foraging behaviors of swarms of honey bees has been 
shown to be effective. These methods often provide fast 
and reasonable solutions, including global optimization with 
short time searching. Among them, the BCO method is a 
probabilistic technique for approximating the global 
optimum of a given function.  It has a simple structure, is 
efficient and employs an advanced search technique. 
However, like other evolutionary algorithms, BCO also has 
some drawbacks which limit its performance. The 
conventional BCO algorithm can be limited in reaching a 
global optimum solution in a reasonable computational time 
when the initial solution is far away from the region where 
an optimum solution is required. As a result, with a new 
population, it can take more time to search for a solution 
and a long computational time because the algorithm 
possesses poor convergence behavior. Therefore, 
accelerating convergence speed and avoiding the local 
optima have become two important and appealing goals in 
BCO research. A number of BCO variants have been 
proposed to achieve these two objectives [25]-[28].  

The approach used was divided into three issues. The 
first one was to solve the optimization problem by using the 
principle of equal cost (), an estimate of the initial 
populations to narrow the search scope, and the use of the 
BCO algorithm to find the most appropriate solution around 
the estimates used. This method was termed “a 
Combination of Lambda Iteration and Bee Colony 
Optimization (CLI-BCO)”. Secondly, an improvement in the 
movement of bees was investigated using a local search 
method, called the golden section search method, in order 
to balance exploration and to identify food locations more 
efficiently. This was termed “a Combination of Golden 
Section Search and Bee Colony Optimization (CGS-BCO)”. 
Finally, an integration of the methods of the CLI-BCO and 
CGS-BCO approaches was examined. This concept was 
used to improve the efficiency of the traditional BCO 
algorithm. This paper proposes a new algorithm which is a 
modification of the “Improved local search in bee colony 
optimization (ILS-BCO)” method to solve the problems of 
the conventional BCO method. ILS-BCO introduces 
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additional mechanisms for improving the search process. A 
feasibility study incorporating the ILS-BCO algorithm was 
assessed for solving the static ED problem with a smooth 
cost function. The best results from the ILS-BCO method 
are compared with conventional methods such as PSO, a 
Hybrid of Lambda Iteration and BCO (HLBCO), the Water 
Cycle Algorithm (WCA), the Krill Herd Algorithm (KHA) and 
a hybrid Differential Evolution Algorithm based on Particle 
Swarm Optimization (DEPSO) in terms of both the most 
appropriate answers and of solution convergence. 
 

Economic Dispatch Problem Formulation  
The purpose of addressing the ED problem is to find an 

optimal combination of electricity generation across different 
generators depending on demand. This involves the 
allocation of load demand commitment within the system to 
activate a set of generators over a specified period of time.  
This must be done in order to achieve minimal production 
costs while addressing physical constraints and operational 
requirements.  The applicable conditions of the system 
include the following factors.  
 

Objective functions 
The objective of an ED problem is to minimize the total 

fuel costs subject to the constraints of a power generation 
system. Symbolically, this is represented as: 

(1)   
1

: F ( )  
N

i i

i

TMinimize F P


   

where FT is the total generation cost, N is the number of 
generators committed to the operating system and Fi is the 
generation cost function of ith generator is usually 
expressed as a quadratic polynomial as follows: 

(2)   
2( )

i i i i i i i
F P a P b P c    

where ai, bi and ci are the cost coefficients of the ith 
generator; Pi is the power output of the ith generator. It is an 
equation that represents the smooth cost function (see 
Figure 1). 
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Fig.1. Characteristic of the smooth cost function 
 

Constrain 
The objective functions are subject to the following 

constraints. 
Power balance constraint 

All the load capacity that is equal to the sum of the total 
amount of electricity demand with a total power loss in the 
transmission system as: 

(3)   
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where PD is the load demand and Ploss is the total 
transmission network losses, which is a function of the unit 
power outputs that can be represented using B coefficients 
as follows: 
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Generation limits constraint 
The output power of each generating unit has to lie in 

between a lower and an upper bound. This is represented 
by a pair of inequality constraints as: 

(5)   min max
ii iP P P   

where, min
iP and max

iP  are the lower and upper bounds for 

power outputs of the ith generating unit respectively. 
 

Improved Local Search in Bee Colony Optimization 
(ILS-BCO) to solve the Economic Dispatch Problem 

ILS-BCO integrated the methods of the CLI-BCO and 
CGSS-BCO approaches. It provides an initial estimate 
based on the same principle of equal cost (incremental 
cost:), defines the boundaries around  values and 
improves the movement of bees using a local search 
method called the golden section search method. The 
objective is to balance exploration and to get more efficient 
food locations. Each procedure is preformed according to 
the BCO method. The BCO, Lambda Iteration, Golden 
Section Search, CLI-BCO, CGS-BCO and ILS-BCO 
methods for solving the ED problem are described below. 
 

Bee colony optimization for economic dispatch 
problem 

The BCO algorithm was proposed by Karaboga for 
numerical optimization [29]. The algorithm provides a way 
to find the most appropriate value for Economic Dispatch 
that mimics the food foraging behaviors of honey bees. This 
method divides the bees into two categories: the first group 
being the scout bees, and the second group is the 
employee bees who attempt to find the answer. Suppose 
the answer is to find the honeybee source. The function of 
scout bees is to find random honey bee sources within the 
scope of possible answers (search space). After the scout 
bees find the sources, they fly back to the hive to 
communicate with other bees. Bee communication uses a 
variety of dances to indicate the amount and direction of the 
honey. The employee bees will then move the honey from 
the honey source. The numbers of bees will vary in relation 
to the number of honeybees available and the distance to 
the source. 

The following of parameters are used for the description 
of the BCO algorithm used for solving a general 
optimization problem: 

n is the number of scout bee. 
m is the number of random honeybee sources from 

scout bees. 
e is the number of nectar honeybee sources with the 

highest amount of honeybee selected from m 
nep is the number of employee bees assigned to e 

honeybee sources. 
nsp is the number of employee bees assigned to m-e 

honeybee sources. 
The procedure of BCO algorithm is described as follows. 

Step 1: Specify the parameters of the BCO algorithm.  
Step 2: The bee algorithm starts with the scout bees (n) 

being placed randomly in the search space. They 
are subject to the regulatory requirements of the 
system which can be expressed as follows: 

(6)   
,min ,max ,min(( ) (0,1))i i i iP P P P rand     

Step 3: The fitness of the sites visited by the scout bees 
are evaluated and the solution is sorted from the 
most productive to the least. 

Step 4: Choose the solution that can be used for a number 
of m responses from n to find a solution in the 
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neighborhood by requiring the bee colony to 
choose a solution that is within the number of m. 

Step 5: Choose the best solution for the amount of e from 
within the m solution. Separated the m best 
solution to two groups, the first group has e best 
solutions and other group has m-e best solutions.  

Step 6: The employee bees to find a solution in the area 
for the two groups that were divided in step 5. The 
nep employee bees go to find a solution 
surrounding e and the number of nsp employee 
bees go out to find a solution in the area m-e. The 
duty of the employed bees is to determine the new 
food source say, vi with the help of the food source 
xi assigned to it during the initialization phase. The 
equation used is: 

(7)   ( )ij ij ij ij kjv x x x    
where vi is the new food source generated by using both the 
current food source xi and a randomly chosen food source 
xk from the population and ij is a uniform random number 
from [-1, 1] (generated at random every time it is used). 
Step 7: Evaluate the value of the answer and compare 

each component and choose the best approach or 
solution that matches the given conditions. 

Step 8: Check the threshold for downtime. If conditions are 
set to be met, then show the most appropriate 
solution; otherwise, go back to step 2. 

 

Lambda iteration () 
When a solution is reached, multiple generators have 

the same marginal (or incremental) cost which is equal to . 
If the costs between generators are different, by reducing 
capacity at higher cost margins and by increasing capacity 
at lower cost, overall costs can be reduced. If demand 
changes, changes in total costs can be estimated from  
and the solved value of  can be used to evaluate Pi. 
Equation (2) is the fuel cost of power generation for each 
generator. This equation is used to calculate the 
incremental cost; () using the differential equation shown 
in Equation (8). 
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Total fuel cost is lowest when  are equal. The value of 
 for the initial configuration of the system can be calculated 
from equation (9) and the electric power from each 
generator can be calculated from equation (10). 
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Golden section search 
The golden section search is a technique for finding the 

extremes (minimum or maximum) of a strictly unimodal 
function by successively narrowing the range of values 
inside which the extreme is known to exist. The technique 
derives its name from the fact that the algorithm maintains 
function values for triples of points whose distances form a 
golden ratio. The golden-section search was discovered by 
Kiefer (1953). It is a classical local search algorithm for non-
differentiable fitness functions that was introduced in [30]. A 
local search procedure is applied to F in order to detect the 
scale factor value. This can be gained by minimizing the 
function f(F) in the decision space [−1, 1].  The scale factor 

applies the Golden Section Search to the scale factor in 
order to generate a high quality food sources. This scheme 
processes in the interval [a = -1, b = 1] and generates two 
intermediate points as follows: 

(11)   
1

b a
F b
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(12)   
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where  is the golden section ratio as follow: 

(13)   1 5

2
 
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The evaluated values of f(F1) and f(F2) are then 
compared and if f(F1) < f(F2) then F2 replaces F and this 
procedure is repeated in a new smaller interval [a, b]. The 
upper and lower bounds of scaling factor are calculated as 
follows: 

Repeat 

Compute  
1

b a
F b




    , 
2

b a
F a




   

Evaluate f(F1) and f(F2) 
If f(F1) < f(F2) then 
F=(F1) 
Else 
F=(F2) 
End If 

 

Combining Lamda Iteration and Bee Colony 
Optimization (CLI-BCO) to solve the Economic Dispatch 
Problem 

BCO has the advantage of providing global optimal 
solutions and has the capability for solving combinatorial 
optimization problems. However, in this algorithm, the initial 
populations are generated randomly causing long 
computation times and a long time to convergence when 
the generated initial populations are too far from the 
optimum solution. To avoid these problems,  is used for 
determining the initial value for BCO algorithm. The CLI-
BCO algorithm used to solve economic dispatch is 
described as follows: 
Step 1: Identify parameters for CLI-BCO algorithm.  
Step 2: Calculate the value of  for the system’s initial 

configuration for the scout bees from Equation (9). 
Step 3: Find the lower and upper limits of the ith generating 

unit by defining the scope of the value of  as 
follows (14)-(15). 

(14)   max +i i
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bP
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 

  
rank, which is a multiplier in scoping the answer, is more 

than 0 and less than 1. The value of rank in this article is 
defined as 0.15. Then, follow Steps 2 to 8 from the BCO 
algorithm. 
 

Combining Golden Section Search and Bee Colony 
Optimization (CGS-BCO) to solve the Economic 
Dispatch Problem 

Follow Steps 1 to 5 from the BCO algorithm. 
Step 6: Use the employed bees to replace abandoned 

food sources as follows: 

(16)   ( )ij ij ij kjv x F x x    
where F is the scaling factor, calculated using Golden 
section search. Evaluate and store the best solution found 
to date and again follow Steps 7 to 8 from the BCO 
algorithm.  
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The generation of new food sources is seen as an 
opaque procedure depending on the scale factor F and 
depends on the values of a and b. The scaling factor 
becomes an important aspect that is to be controlled in 
order to guarantee a high quality food source (solution) that 
can have an important role in the succeeding generations. 
 

Improved local search in bee colony optimization (ILS-
BCO) to solve the Economic Dispatch Problem 

In order to maximize the exploitation capacity of the 
BCO algorithm, the integration of the CLI-BCO and CGS-
BCO approaches is purposed.  This algorithm, uses the 
principle of equal costs (lamda iteration), an estimate of the 
initial populations to narrow the search scope, and 
improving the movement of bees using the golden section 
search method, in order to balance exploration and to get 
more efficient identification of food locations. The procedure 
of the ILS-BCO algorithm to solve the ED problem is 
described as follows: 
Step 1: Specify the parameters of the ILS-BCO algorithm 

as shown in Table 1. These parameters were 
found by trial and error. The values of n, m, e, nep 
and nsp were adjusted between 10 to 100, 5 to 90, 
3 to 80, 10 to 100 and 10 to 100, respectively. This 
processing gives the optimal parameters as shown 
in Table 1 that result the best answer and the 
minimum number of iterations. 

 

Table 1. The parameters used within BCO, CLI-BCO, CGS-BCO 
and ILS-BCO 

Parameters Number 

Population size (n) 20 
Number of selected sites (m) 10 
Number of best sites (e) 5 
Number of bees around best sites (nep) 50 
Number of bees around other sites (nsp) 50 

 

Step 2: Calculate the value of  for the system initial 
configuration for the scout bees from Equation (9). 

Step 3: Find the lower and upper limits of the ith generating 
unit by defining the scope of the value of  as in 
equations (14) and (15). 

Step 4: The bee algorithm starts with the scout bees (n) 
being placed randomly in the search space and 
they are subject to the regulatory requirements of 
the system which can be expressed as (6). 

Step 5: The fitness of the sites visited by the scout bees 
are evaluated and a solution is determined from 
the most to the least fitness. 

Step 6: Choose a solution that can be used for a number 
of m responses from n. 

Step 7: Choose the best solution for the amount of e from 
within the m solution. Separated the m best 
solution to two groups, the first group has e best 
solutions and other group has m-e best solutions. 

Step 8: The nep employee bees go to find a solution 
surrounding e and the number of nsp employee 
bees go out to find a solution in the area m-e. The 
employed bees are used to replace the abandoned 
food sources, as in (16). 

Step 9: Evaluate the value of the answer and compare 
each component and choose the best approach or 
solution that matches the given conditions. 

Step 10: Check the threshold for downtime. If conditions are 
set to be met, then show the most appropriate 
solution; otherwise, back to step 4. 

 

Case Studies 
The proposed ILS-BCO algorithm was applied to 

economic dispatch problems in two different test cases for 
verifying its feasibility. These were a six units system and a 

fifteen unit system. Each optimization method was 
implemented in a MATLAB program which runs on a 
TOSHIBA Satellite P745, Intel (R) Core (TM) i5, 2.30 GHz 
with 8 GB of RAM. 
 

The first case study 
The test system for this case consisted of six thermal 

units, including defined generation limits, power balance 
constraints, generators rating constraints, 26 buses and 46 
transmission lines. It needed to generate electric power of 
1263 MW. The generator feature of each is shown in Table 
2 and the B-coefficient matrix was as follows [31]. 
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Table 2. Generator characteristics in case 1 

Unit ai bi ci 
min

iP  min
iP  

1 0.0070 7.00 240 100 500 
2 0.0095 10.0 200 50 200 
3 0.0090 8.50 220 80 300 
4 0.0090 11.0 200 50 150 
5 0.0080 10.5 220 50 200 
6 0.0075 12.0 190 50 120 

 

The second case study 
This system contained of 15 thermal generating units 

and their characteristics are given in Table 3. These 
generation units must support a total of 2630 MW, including 
transmission losses. The B-coefficient matrix is as shown in 
the references [31]. 
 

Table 3. Generator characteristics in case 2 
Unit ai bi ci 

min
iP  min

iP  

1 0.000299 10.1 671 150 455 
2 0.000183 10.2 574 150 455 
3 0.001126 8.80 374 20 130 
4 0.001126 8.80 374 20 130 
5 0.000205 10.4 461 150 470 
6 0.000301 10.1 630 135 460 
7 0.000364 9.80 548 135 465 
8 0.000338 11.2 227 60 300 
9 0.000807 11.2 173 25 162 

10 0.001203 10.7 175 25 160 
11 0.003586 10.2 186 20 80 
12 0.005513 9.90 230 20 80 
13 0.000371 13.1 225 25 85 
14 0.001929 12.1 309 15 55 
15 0.004447 12.4 323 15 55 

 

Simulation Results 
To evaluate the feasibility of using the BCO, CLI-BCO, 

CGS-BCO and ILS-BCO methods to solve the ED problem, 
two examples of power generation, with the 6 and 15 units, 
were applied. All optimization methods that were used were 
compared with differential random initial solutions. To 
evaluate the effectiveness of each technique, all search 
algorithms were executed over the same time interval. 
Consequently, the fastest convergence would indicate the 
most effective method. The simulations take time so speed 
speed is useful for comparisons. In this test, the parameters 
of BCO, CLI-BCO, CGS-BCO and ILS-BCO are shown in 
Table 1. 
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Simulation results in case 1 
Four methods (BCO, CLI-BCO, CGS-BCO, and ILS-

BCO), were employed to test the two study systems. In this 
case, each individual Pg contained 6 generator power 
outputs. For the 1,263 MW electricity demand, the results 
from all methods are compared in terms of minimum 
generation cost and computation efficiency. The methods 
that offer the best solution are shown in Table 4. The 
convergence characteristics of all methods for the 6 unit 
system are shown in Figure 2. The results of the ILS-BCO 
method are compared with the PSO [32], HLBCO [33] and 
WCA [34] methods (Table 5). 
 
Table 4. Results of six units system in case 1 

Unit BCO CLI-BCO CGS-BCO ILS-BCO 
P1 (MW) 445.19 446.70 452.04 455.27 
P2 (MW) 177.26 178.21 170.37 168.78 
P3 (MW) 262.49 258.24 255.72 259.18 
P4 (MW) 140.15 138.58 141.54 132.55 
P5 (MW) 161.58 159.85 167.74 169.65 
P6 (MW) 88.47 93.23 87.42 89.56 
PT (MW) 1275.12 1274.81 1274.83 1274.78 
FT ($/h) 15440.73 15436.70 15436.19 15433.72 
Ploss (MW) 12.12 11.80 11.83 11.78 

 

 
 

Fig.2. Convergence curve of the 6 unit system 
 

Table 5. Results and comparison to other optimization methods 
evaluated in case 1 

Unit  PSO HLBCO WCA ILS-BCO 
 P1 (MW) 440.58 449.028 447.83 455.27 
 P2 (MW) 167.44 172.48 172.21 168.78 
 P3 (MW) 278.24 258.05 261.15 259.18 
 P4 (MW) 150 137.72 138.40 132.55 
 P5 (MW) 157.60 166.52 166.35 169.65 
 P6 (MW) 81.22 91.3657 89.08 89.56 
PT (MW) 1275.07 1275.16 1275.02 1274.78 
FT ($/h) 15445.48 15439.63 15437.41 15433.72 
Ploss(MW) 12.08 12.16 12.02 11.78 

 

Table 4 shows that the ILS-BCO algorithm had more 
ability to find the optimal points in a search space compared 
to BCO, CLI-BCO and also the proposed CGS-BCO 
method. The optimal cost obtained by the ILS-BCO was 
15433.72, which compares favorably with the other results 
in the table. The BCO method converged to an optimum 
cost from 270 iterations onwards, CLI-BCO from 180 
iterations onwards, CGS-BCO from 70 iterations onwards, 
whereas ILS-BCO converged in less than 30 iterations. It 
can be seen that the level of the cost function didn’t change 
too much, while ILS-BCO had the fastest convergence 
speed. Similarly, the cost function achieved by the ILS-BCO 
method was significantly better than those obtained by the 
PSO, HLBCO, and WCA methods (Table 5). 

 

Simulation results in case 2 
This system contained 15 thermal generating units. 

These generation units had to support a load demand of 
2630 MW. The results of the ILS-LBCO method are 
compared with those obtained by BCO, CLI-BCO, and 
CGS-BCO in terms minimum generation cost and 
computation efficiency. This sample has a rather 
problematic search area when compared with the previous 
example. After using the proposed algorithm for the 
problem, the results are shown in Table 6, which satisfy the 
constraints of the generation units. Figure 3 shows the 
convergence of values for the fitness function and the cost 
function achieved by the ILS-BCO method when compared 
with the DEPSO [35], KHA [36] and WCA [34] methods 
(Table 7). 
 

Table 6. Results of fifteen units system in case 2 
Unit BCO CLI-BCO CGS-BCO ILS-BCO 

 P1 (MW) 452.56 432.11 438.77 450.45 
 P2 (MW) 443.26 437.27 438.24 442.81 
 P3 (MW) 129.13 129.76 129.95 128.74 
 P4 (MW) 126.77 128.39 124.60 129.45 
 P5 (MW) 266.61 331.28 330.85 329.35 
 P6 (MW) 458.12 446.38 436.35 435.20 
 P7 (MW) 462.26 441.75 458.13 437.53 
 P8 (MW) 63.57 70.90 63.98 65.27 
 P9 (MW) 43.07 29.31 29.13 28.51 
 P10 (MW) 40.07 26.15 28.72 29.49 
 P11 (MW) 61.82 53.57 60.15 59.38 
 P12 (MW) 52.52 71.90 56.76 62.87 
 P13 (MW) 25.02 25.67 28.25 25.49 
 P14 (MW) 17.86 16.25 15.23 16.39 
 P15 (MW) 15.17 15.40 16.95 15.07 
PT (MW) 2658.52 2656.10 2656.02 2655.97 
FT ($/h) 32565.32 32542.07 32543.36 32535.23 
Ploss (MW) 28.51 26.09 26.01 25.97 

  

 
 
Fig.3. Convergence curve of the 15 unit system 
 

The ILS-LBCO algorithm had a greater ability to find the 
optimal points in a search space compared to either BCO or 
CLI-BCO and also the proposed CGS-BCO method (Table 
6). The optimal cost obtained by the ILS-BCO method was 
32535.23, which compares favorably with the other 
methods. The BCO converged to the optimum cost from 
270 iterations onwards, CLI-BCO from 210 iterations 
onwards, CGS-BCO from 120 iterations onwards, whereas 
the LIS-BCO method converged in less than 50 iterations. 
Similarly, the cost function achieved by the ILS-BCO 
method was significantly better than those obtained by the 
DEPSO, KHA, and WCA methods (Table 7). 
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Table 7. Results and comparison to other optimization methods 
evaluated in case 2 

Unit  DEPSO KHA-IV WCA ILS-BCO 
 P1 (MW) 455.00 455.00 NA 450.45 
 P2 (MW) 420.00 455.00 NA  442.81 
 P3 (MW) 130.00 130.00 NA  128.74 
 P4 (MW) 130.00 130.00 NA  129.45 
 P5 (MW) 270.00 230.80 NA  329.35 
 P6 (MW) 460.00 460.00 NA  435.20 
 P7 (MW) 430.00 465.00 NA  437.53 
 P8 (MW) 60.00 60.00 NA  65.27 
 P9 (MW) 25.00 25.00 NA  28.51 
 P10 (MW) 62.97 31.27 NA  29.49 
 P11 (MW) 80.00 76.70 NA  59.38 
 P12 (MW) 80.00 80.00 NA  62.87 
 P13 (MW) 25.00 25.00 NA  25.49 
 P14 (MW) 15.00 15.00 NA  16.39 
 P15 (MW) 15.00 15.00 NA  15.07 
PT (MW) 2657.97 2656.77 2656.25 2655.97 
FT ($/h) 32588.81 32547.37 32541.86 32535.23 
Ploss (MW) 27.97 26.77 26.25 25.97 

 
Conclusion 

New local search methods were implemented for 
different ED problems within the two case studies. Several 
sophisticated techniques, such as initial estimation using 
lambda iteration, improving the movement of bees using a 
local search method called the golden section search 
method, and bee colony optimization have been added to 
the ILS-BCO method in order to enhance the search 
potential. The ILS-BCO algorithm has been proposed to 
solve the ED problem by combining an initial estimation 
using the lambda iteration method, the use of the BCO 
method to find the best solution, and the use of the golden 
section search method as a mechanism for increasing 
efficiency in finding the solution. The ILS-BCO optimization 
mechanisms outperformed other recently reported 
algorithms. The strength of the algorithm was proved in the 
two case studies used to find solutions for the ED problem. 
It is obvious from the convergence quality of the ILS-BCO 
algorithm in two case studies, that the robustness of the 
algorithm is proved. Study results from the 6 and 15 
generating unit cases confirmed that the ILS-BCO was 
much superior to the BCO, CLI-BCO and CGS-BCO 
methods in terms of providing a high-quality solution with 
stable convergence characteristics and good computation 
efficiency. This method provided fast and accurate results 
when compared with conventional methods. By using the 
ILS-IBCO method, execution time could also be reduced. In 
case studies, the proposed method produced better results 
in comparison with the PSO, HLBCO, WCA, KHA and 
DEPSO methods depending on the test conditions that 
were evaluated. The numerical results clearly showed that 
the proposed algorithm gave better results. Power system 
operators can use this algorithm for optimization. 
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