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Determining the dwell time constraint for switched ऒஶ	filters 
 
 

Abstract. This paper presents an algorithm for determining the minimum dwell time constraint for switched linear ऒஶ	fault detection filters. When 
applying switched systems, ensuring the stability is a crucial part, which can be guaranteed, when we switch slowly enough between the 
subsystems, more precisely the intervals between two consecutive switching, called dwell time, are large enough. The problem formulation is based 
on multiple Lyapunov functions and is expressed through a special form of linear matrix inequities (LMIs), which include a nonlinear term with the 
dwell time. This represents a multivariable time dependent optimization problem. To solve this special formulated LMIs, we propose an algorithm, 
called ࢊࢀ-iteration, which is a combination of the procedure of interval halving with an LMI solver. The results of the illustrative example suggest 
further benefits. 
 
Streszczenie. W artykule zaprezentowano algorytm do określania minium czasowego miedzy kolejnymi przełączeniami liniowego filtru do detekcji 
błędu ࣢ஶ. Sformułowanie problemu bazuje na wielokrotnej funkcji Lapunva. Do rozwiązania tego problmu zaproponowano algorytm ௗܶ-iteration 
który jest kombinacją procedury połówkowania intwerwału z wykorzystanie solvera LMI. Agorytm do określania minium czasowego miedzy 
kolejnymi przełączeniami liniowego filtru do detekcji błędu ऒஶ 
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Introduction 

Switched systems for purpose of nonlinear control have 
been studied extensively in the two past decades and 
useful results are now available, see e.g. [1], [2], [3], [4] and 
[5]. As it was stated by several authors e.g. (Liberzon and 
Morse in 1999, Hespana in 2004, Chen and Saif in 2004, 
Colaneri in 2008,) the asymptotic stability can be ensured 
when we switch slow enough between the subsystems, 
more precisely the intervals between two consecutive 
switchings -called dwell time-, are large enough. This 
problem has been specially addressed in the synthesis of 
switched state estimator of Luenberger type, e.g. (Prandini 
in 2003, Chen and Saif in 2004) and it is also a crucial part 
in our objective of the designing a switched linear  ࣢ஶ fault 
detection filter. In earlier researches different methods have 
been proposed for determining the minimum dwell time, see 
[4], [6], [7], [8], [9] and [10].  The most commonly used and 
powerful algorithms, like e.g. the representation based on 
Kronecker products (Geromel and Colaneri, 2006) or Logic-
Based Switching Algorithms (Hespana, 1998), are based on 
multiple Lyapunov functions and expressed in form of linear 
matrix inequalities (LMIs), see in [6], [7], [9], [10] and [11].  

Since we deal with ࣢ஶ filtering, the basic Lyapunov 
theorem needs to be extended to cope with performance 
requirements such as the root mean square (RMS) property 
of a switched system, which corresponds normally to 
determining an upper bound of the minimum dwell time. To 
this aim, in our research we consider a method used by 
(Geromel and Colaneri, 2008) for ࣢ஶ nonlinear control and 
we have adopted it to the classical ࣢ஶ detection filtering 
problem, see in [12], [13], [14], [15] and [16].  More exactly, 
the concept of the switched ࣢ஶ control in [7] can be 
associated to the switched ࣢ஶ filtering problem by duality 
and sufficient stability conditions can be derived. 

LMIs are nowadays widely used powerful tools for 
solving complex optimization problems in field of control 
engineering, see e.g. [17], [18], [19] and [20]. The common 
used advanced methods, however, refer to a LMI solver 
only accepts formulation where the decision variables are 
included in linear terms.  On the contrary, our problem is 
formulated as a LMIs which include the term of matrix-
exponential function with the dwell time, is consequently 
nonlinear. As a result, the task cannot be treated as a 
simple feasibility problem, see e.g. [17], [21] and [22]. 
Despite the widespread referring to this special LMI 
formulation, however, there cannot be found any solution 
algorithm about it in the control literature. To this aim, in this 

paper we present an algorithm to calculate the common 
minimum dwell time, within a pre-specified accuracy, 
assuring each specified ࣢ஶ level calculated separately for 
each single filter. 

The contents of this paper are as follows. After the 
introduction, in Section II the dwell time condition for 
assuring stability of the switched linear ࣢ஶ	filter is 
presented. The main outcome is a special form of LMIs 
including the nonlinear term with the dwell time, which 
represents a multivariable time dependent optimization 
problem. Section III presents the proposed numerical 
algorithm for the calculation of the common minimum dwell 
time assuring each specified ࣢ஶ level. In Section IV the 
algorithm Tୢ -iteration is applied for an illustrative example in 
MATLAB. In Section V the main results are summarized 
and concluded the paper is concluded with some final 
remarks.  

Stability of the State Estimation Error involving the 
dwell time constraint 
The synthesis technique proposed below is originated from 
results (Geromel and Colaneri, 2008) with focus on the 
application to robust nonlinear control, see in [7] and [6]. 
We have adopted this concept to a ࣢ஶ detection filtering 
problem and it will be introduced in this chapter.  

However, in order to improve the detection’s 
performance we form our concept slightly different from 
theirs. That means, instead of calculation of the minimum 
dwell time assuring a common specified ࣢ஶ	level for each 
controller, we determine the common minimum dwell time 
to each specified ࣢ஶ	level calculated separately for each 
single filter. 

In the following we are referring to the concept in [12], 
which’s system-description has been extended to a 
switched linear system.  

Extending the switched linear system representation in 
[6] to the concept of perturbed system, see in [12], the 
extended switched linear system subjected to disturbance 
and faults, can be represented in state space form as 
follows:  
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where for all t	 ൒ 0 , xሺtሻ ∈ Թ୬ is the state vector, ξ ∈ Թ୬ is 
the arbitrarili fixed initial condition, uሺtሻ ∈ Թ୫ is the input 
vector, yሺtሻ ∈ Թ୮  is the output vector,  σሺtሻ: ሾ0,∞ሻ → Θ is 
the piecewise constant switching function. A஢ሺ୲ሻ	 ∈ 	Թ୬୶୬, 
B஢ሺ୲ሻ ∈ Թ୬୶୫	, C஢ሺ୲ሻ	 ∈ Թ୮୶୬	are an appropriate matrices. 
Assume that the pairs ሺA஢ሺ୲ሻ	, C஢ሺ୲ሻሻ are observable for all 
t	 ൒ 0. For further consideration denote nୣ the number of 
subsystems, Θ ൌ ሼ1,… , nୣሽ an index set and q ൌ 1,… , nୣ the 
sequence number of the switchings. Bச	஢ሺ୲ሻ		=	ൣB୵,L୼൧ 
denotes the worst-case input direction and κሺtሻ ∈ 	 Lଶ	ሾ0, Tሿ is 
the input function for all t ∈ Թା representing the worst–case 
effects of modelling uncertainties and external disturbances. 
The cumulative effect of a number of k faults appearing in 
known directions L୧ of the state space and is modelled by 
an additive linear term ∑L୧	஢ሺ୲ሻ	ν୧ሺtሻ	. L୧ ∈ Թ୬୶ୱ	and ν୧ሺtሻ are 
the fault signatures and failure modes respectively. ν୧ሺtሻ are 
arbitrary unknown time functions for t	 ൒ t୨୧ , 0 ൑ t ൑ T, 
where t୨୧ is the time instant when the i-th fault appears and 
ν୧ ൌ 0, if t	 ൏ t୨୧ . If	ν୧ሺtሻ ൌ 0, for every ݅, then the plant is 
assumed to be fault free. Assume, however, that only one 
fault appears in the system at a time.  

Denote tℓ and tℓାଵ successive switching times satisfying 
tℓାଵ െ	tℓ 	൒ 	 τୈ. Then the piecewise constant switching 
function between two consecutive switching as 
σሺtሻ: ሾ0,∞ሻ → Θ	for	all	tሺtℓ, tℓାଵሿ	ensures, that the 
equilibrium point x ൌ 0 of the system in (1) is globally 
asymptotically stable. The referred constant τୈ ൐ 0 is 
called the dwell time. Consequently, when designing a 
switched system one also has to make sure, that the time 
difference between two consecutive switching’s is not 
smaller than τୈ. Then the asymptotical stability of the 
switched linear system is preserved, see e.g. in [1], [3], [4] 
and [7]. 

Generally interpreted the fault detection filtering is done 
by estimating the states of the subjected system.  Of 
course, we consider a switched linear system approach, 
where the q-th sub-filter is selected whenever the q-th 
subsystem is active. The stability of the state estimation 
error dynamics may be a crucial part of such design, which 
can be ensured when we switch slowly enough between the 
subsystems, to allow the transient effects to dissipate (Chen 
and Saif, 2004), (Prandini, 2015).  

The state estimator for the system description (1) can be 
represented by the switched system as follows. Let 	z	 ∈ Թ୮ 
denote the output signal, then the state estimate can be 
obtained as 

 
 
 
(2)      
 
          

          
 
where xො ∈ Թ୬	represents the observer state, yො ∈ 
Թ୮	represents the output estimate, zො ∈ Թ୮		is the weighted 
output estimate, Y஢ሺ୲ሻ	is a positive definite matrix the solution 
of the optimization problem in (5) and C୸஢ሺ୲ሻ	 is the 
estimation weighting.  

The equation of the state estimation error for (2) is 
expressed as 

 
 
 
 
 

(3)   

where x෤ሺݐሻ and ε෤ሺݐሻ are defined as 
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As the switching occurs within the finite set of q	 ∈ Θ ൌ
ሼ1,… , nୣሽ subsystems, the system description in (1) and 
consequently in (2) and (3) can be simply represented by 
the matrices ൫A୯, 	B୯, Bச୯, C୯, C୸୯, L୧୯, Y୯	൯, for each q	 ∈
Θ. Assume that all matrices A୯, q	 ∈ Θ are Hurwitz. 

By duality we can associate the ࣢ஶ control problem of 
switched linear system described in [12] to our switched ࣢ஶ 
filtering task, which’s synthesis is based on the Modified 
Riccati Equation (MFARE), that can be formulated for 
switched linear system as  
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for all q ∈ Θ. In (5) the γ୯ ൐ 0 are positive rational constants 
and Y୯	 ∈ R୬୶୬ denote the decision variables which are 
positive definite matrices.  

Following the steps of the synthesis procedure in [7], the 
MFARE can be factorized in form of Riccati Equation as 
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We have note that the optimal gain W୯ is determined 
from the unique stabilizing solution to MAFARE and the 
matrix H୯ is Hurwitz for each q ∈ Θ. 	Since Q୯ depends on 
the γ୫୧୬୯ value, Q୯ ൒ 0	 is not guaranteed for any q ∈ Θ. 
However, (6) admit a positive definite solution, since that 
was created by factorizing the MFARE. It is to note that for 
solving the LMIs in (11) is the condition Q୯ ൒ 0 necessary, 
hence, if Q୯ ൒ 0	does not hold, γ୯ ൐ γ୫୧୬୯ can always be 
chosen such, that Q୯ ൒ 0 holds. 

For any σሺtሻ: ሾ0,∞ሻ → Θ	and for all t ∈ ሺtℓ, tℓାଵሿ	, where 
tℓାଵ ൌ tℓ ൅ Tℓ with Tℓ 	൒ 	 Tୢ ൐ 0  and at t ൌ tℓାଵ the 
switching jumps to σሺtሻ ൌ j ∈ Θ, where the corresponding 
solution of the Lyapunov function along a trajectory of the 
switched filter state estimation error (2) is expressed by 
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where Z୨ ∈ R୬୶୬ is positive definite matrix. 
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The ࣢ஶ control problem described in [7] can be 
associated to the ࣢ஶ filtering problem by duality. By using 
the time varying solution Riccati equation in finite time 
interval such that any σሺtሻ: ሾ0,∞ሻ → Θ	further satisfies the 
additional constraint	T୙ ൒ 	 tℓାଵ െ tℓ for all q ൐ 0, for some 
	T୙ ൒ 	 Tୢ ൐ 0		is given [7]. Based on (6) and the Lyapunov 
function formulated along a trajectory of the filter error 
system in (10) one can derive a time varying LMIs, which 
can be used to obtain the common minimum dwell time for 
each specified ࣢ஶ level of each particular filter. 

Assume that for a given Tୢ  there exists a collection of 
positive definite matrices ሼZଵ, … , Z୬ୣ	ሽ of compatible 
dimensions such that the LMI 
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hold under the worst-case input assumption in (1) for any 
switching signal σሺtሻ: ሾ0,∞ሻ → Θ satisfying the condition Tୢ  = 
tℓାଵ െ	tℓ 	൒ 	 Tୢ ୫୧୬. Then, the equilibrium solution of the 
state estimation error (3) is globally asymptotically stable.  
 
Numerical method for finding the common minimal 
dwell time by means of ܌܂	–iteration 

As we have shown it in the previous chapter, the 
problem of determining the common minimum dwell time 
can be obtained by solving the set of LMIs (11). According 
to this idea, by means of combining of an algorithm interval 
halving for fixed scalar Tୢ  the LMIs can be treated as an a 
feasibility problem and the common minimum dwell time 
calculated.  
After solving the MFARE in (5) and doing the factorization, 
the Y୯,  H୯	and Q୯ matrices previously obtained for each 
q ∈ Θ. In [16] it is explained how the MFARE as a LMI can 
be formulated and solved. Then (11) can be represented via 
the following optimization problem: 

 
 
 
 
 
(12)                     
 

 
 
 
The main benefit of the LMI formulation is, that it defines 

a convex constraint with respect to the variable vector. For 
that reason, it has a convex feasible set which can be found 
guaranteed by means of convex optimization procedure. 
When using an LMI solver, however, it usually only accepts 
formulation where the decision variables are included in 
linear terms. Unfortunately the LMIs in (12) include the term 
of matrix-exponential with the design scalar variable Tୢ 	are 
nonlinear, consequently the task cannot be treated as a 
feasibility problem, see in [18], [19], [20] and [22], so the Tୢ 	 
obtained. To overcome this difficultness we implemented an 
algorithm called Tୢ -iteration, in which an interval halving 
method is used iteratively. The algorithm reduces gradually 
the value of the Tୢ  scalar variable until the constraints of the 
LMIs in (12) are no longer feasible, consequently any of 
Z୯	matrices, has no longer a positive definite solutions. The 
Tୢ ୫୧୬	which is so reached, is within the limits given by an 
arbitrarily small tolerance ε ൐ 0 and is the common 
minimum dwell time, such holds that  Tୢ ୫୧୬ 	൑ τୈ.  

The algorithm for the feasibility problem of determing the 
minimum dwell time can be formulated as follows (remark: 
the algorithm has ben also implemented in MATLAB so 
some commands are referred to them): 

The inputs for the method are:  Y୯,  H୯ and Q୯ matrices 
for each q ∈ Θ can be obtained from (5), as well as (8), (9), 
respectively. eps as the relative accuracy of the solution, 
Tୢ ୫ୟ୶	as the right limit of the interval (the left limit is zero).  

The second variables are: a, b and i , they stand for 
assignation of interval and counting cycle respectively. The 
Tୢ  as step size (midpoint), the Tୢ ୫	variable, which contains 
the value of Tୢ  at the end of the iteration 
The outputs are: Z୯	matrix q ∈ Θ is positive definite decision 
variable, the Tୢ ୫୧୬	contains the Tୢ 	value when the iteration 
is finished and it is also the minimum dwell time assuring 
each specified ࣢ஶ	level. 

Each iteration performs the following steps: 
1. Calculate Tୢ , the midpoint of the interval, which is 
assigned by a and b.  That is Tୢ ൌ a ൅ ሺb െ aሻ/2	; 
2. Calculate the matrix exponential function eୌ౧	୘ౚ for the 
fixed Tୢ  value and substituting its values in (11); 
3. Solve the LMIs in (11) as a feasibility problem by the 
MATLAB function feasp [22], which returns both the scalar 
value of t୫୧୬		as a measure of the feasibility and the 
feasibility decision vector xfeas; 
4. Call the MATLAB function dec2mat which returns the 
solutions for Z୯	; 
5. If the feasibility criteria with fixed Tୢ 	 are not satisfied, 
that is t୫୧୬	 ൒ 0,  
then the upper and lower bounds of interval are changed;  
Otherwise the value of Tୢ  is saved, that is Tୢ ୫ ൌ Tୢ   and the 
iteration is continued; 
6. Examine whether the new interval assigned by b-a 
reached the relative accuracy of the solution - called 
epsilon: 
 If not, the iteration is repeated;  

 If yes, the iteration is finished and the Z୯	matrices 

are calculated based on the previous value of Tୢ . 
Additionally Tୢ ୫୧୬ ൌ Tୢ ୫. 
An illustrative example 
ௗܶ	– iteration algorithm 

In this section the presented Tୢ 	–iteration algorithm will 
be implemented for synthesis of switched linear ࣢ஶ	filter 
based on 3 subsystems and in case study.  

Consider the matrices Y୯, H୯ and Q୯ were previously 
calculated from (5), (8) and (9). The conditions of the 
definiteness for each matrix are satisfied according to 
conditions in (6). The input matrices of the 3 subsystems 
are,  
for the subsystem 1: 

1
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2

91.9324 20.9809 28.0690

106.1269 661.2837 1.5668 ,

0.1088 0.4258 8.6914

H

 
   
    

5
2

0.1209 0.2449 0.0002

10  * 0.2449 3.0927 0.0006 ,

0.0002 0.0006 0.0000

Q

  
   
    

2

61.5844 18.0647 0.1088

Y 18.0647 249.8336 0.2452 ,

0.1088 0.2452 0.0120

  
   
    

for the subsystem 3: 

3

78.3760 25.7621 27.8720

132.6617 626.8514 1.9901 ,

0.1106 0.4382 8.5647
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0.0854 0.2658 0.0001

  10  * 0.2658 3.1959 0.0008 ,

0.0001 0.0008 0.0000

Q
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3

48.0245 19.4905 0.1127

19.4905 250.7915 0.2733

0.2733 0.0142

.

0.1127

Y

 
   
  

 


 
 

The ௗܶ	–iteration including the LMI computation with the 
feasibility problem was implemented in MATLAB, hereby 
only its symbolic algorithm is shown, see below! 
(Note that some commands are from LMI-Toolbox) 

 

Algorithm for finding the  common minimum dwell time 
by means of ௗܶ	–iteration 

1: while ݅ ൏ ݅௠௔௫ and ሺܾ െ ܽሻ ൐  ݏ݌݁

2:   ௗܶ ൌ ܽ ൅ ሺܾ െ ܽሻ/2 

3: 

  

ە
ۖ
۔

ۖ
ۓ

ܼ௤ ൐ 0

௝ܼ ൐ 0

௤ܼ௤ܪ ൅ ܼ௤ܪ௤் ൅ ܳ௤ ൏ 0

݁ு೜்೏ ௝ܼ݁
ு೜೅்೏ െ ܼ௤ ൅ ௤ܻ ൏ 0
ݍ∀ ് ݆ ∈ ߠ	

 

,௠௜௡ݐൣ   :4 ௙௘௔௦൧ݔ ൌ  ሻݏሺ݈݉݅݌ݏ݂ܽ݁

5:   ܼ௤௦ ൌ ,ሺ݈௠௜௦ݐ2݉ܽܿ݁݀ ,௙௘௔௦ݔ ܼ௤ሻ 

6:   if ݐ௠௜௡ ൒ 0  

7:       ܽ ൌ ௗܶ 

8:   else 

9:       ܾ ൌ ௗܶ 

ௗܶ௠ ൌ ௗܶ 

10:   end if 

11: end if 

12: end while 

ௗܶ௠௜௡ ൌ ௗܶ௠ 
 

The obtained values feasible solutions for Z୯	are 
denoted by Zୱଵ	, Zୱଶ, 	Zୱଷ and shown below. The 
corresponding eigenvalues eigሺZ୯ሻ are denoted by 
eigሺZୱଵሻ	, eigሺ	Zୱଶሻ, eigሺ	Zୱଷሻ and shown in the row 10 of the 
Table 1. The positive eigenvalues prove the positive 
definiteness of Z୯	 and the feasibility as well. 

4
1

0.4073 0.0542 0.5203

 10  * 0.0542 0.0518 0.0806 ,

0.5203 0.0806 1.8642

Zs

 
   
    

4
2

0.5122 0.0832 0.6322

 10  * 0.0832 0.0573 0.1137 ,

0.6322 0.1137 1.8605

Zs

 
   
    

4
3

0.6249 0.1250 0.7722

 10  * 0.1250 0.0691 0.1679 .

0.7722 0.1679 1.8750

Zs

 
   
    

Table1.  
i ௗܶ ࢔࢏࢓࢚ eig.(Zsଵ) eig.(Zsଶ) eig.(Zsଷ) 
1 1 െ0.0 25.9263 

83.4787 
  246.1332 

25.2094 
65.1757 

 251.7411 

24.3039 
54.9130 

 252.8941 
2 0.5000 െ0.0 25.9233 

83.4782 
 246.1332 

25.2067 
65.1749 

251.7411 

24.3024 
54.9119 

252.8940 
3 0.2500 െ0.0 25.7108 

83.4469 
246.1329 

25.0205 
65.1218 

251.7407 

24.1738 
54.8301 

252.8934 
4 0.1250 െ0.4 63.3241 

100.7714 
246.4629 

52.9620 
95.4908 

252.1020 

44.0826 
99.2161 

253.4098 
5 0.0625 െ0.5 68.0075 

111.0561 
246.6869 

54.9368 
107.9080 
252.3338 

45.0798 
111.5681 
253.6986 

6 0.0313 0.01 10ସ ∗ 
0.0000 
0.0219 
3.5277 

10ସ ∗ 
0.0000 
0.0115 
3.0118 

10ସ ∗ 
0.0000 
0.0073 
2.1199 

7 0.0469 െ0.7 65.5712 
108.0716 
246.8438 

53.7206 
104.2321 
252.4862 

44.1185 
107.6819 
253.8765 

8 0.0391 0.01 10ସ ∗ 
0.0000 
0.0177 
3.8775 

10ସ ∗ 
0.0000 
0.0098 
3.0578 

10ସ ∗ 
0.0000 
0.0114 
3.2479 

9 0.0430 െ0.6 63.1824 
105.1323 
246.8925 

52.4740 
100.2198 
252.5290 

43.2152 
103.1864 
253.9147 

1 0.0410 െ9.7 10ସ ∗ 
0.0437 
0.2442 
2.0353 

10ସ ∗ 
0.0426 
0.2679 
2.1196 

10ସ ∗ 
0.0423 
0.2640 
2.2627 

1 0.0400 0.01 10ସ ∗ 
0.0000 
0.0243 
6.2884 

10ସ ∗ 
0.0000 
0.0128 
5.7631 

10ସ ∗ 
0.0000 
0.0040 
1.0035 

 
It is to note that in the rows 6, 8 and 11 we did not get a 

feasible solution, because the scalar t୫୧୬ returned with a 
positive value, which means that the associated Z୯ pencil 
contains eigenvalues on or very near the imaginary axis. Of 
course, this resulted in infeasibility. In such cases according 
to the algorithm interval halving, in these steps the upper - 
and lower bounds of an interval changed to ensure a proper 
distance between the tm eigenvalues and the imaginary 
axix.  

The iteration ran until the new interval assigned by b-a 
did not reach the pre-specified relative accuracy of the 
solution eps ൌ 0.001. By performing the Tୢ 	–iteration and 
repeated it 10-times for the Tୢ ୫୧୬ 	ൌ 0.0410s is obtained 
by t୫୧୬	 ൌ െ9.7372. The computational cost associated to 
solving the q independent LMIs plus the iteration. Despite 
the multivariable time dependent optimization problem, by 
means of combination an algorithm interval halving with an 
LMI solver, the determining the common minimum dwell 
time could be applied. An evolution of measures for the 
feasibility t୫୧୬		step by step during the iteration is also 
plotted und shown in Fig. 1. 
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Fig.1. Changing the	t୫୧୬	 step by step during the iteration 

Conclusion 
This paper was concerned with a numerical algorithm 

for determining the minimum dwell time constraint for 
ensuring stability of switched linear ࣢ஶ	fault detection filter. 
Despite the complexity of the multivariable time dependent 
optimization problem, by means of the Tୢ -iteration, the 
common minimum dwell time assuring each specified 
࣢ஶ	level of each single filter could be calculated. The in the 
case study implemented algorithm resulted positive definite 
solutions for Z୯	and also the corresponding common 
minimum dwell time	Tୢ ୫୧୬ ൌ 	0.0410s. On the other hand the 
 iteration has to face of successive numerical-ࢊࢀ
computation of the quadratic matrix inequalities resulted in 
a proportional computation cost. We have found the 
solution after running the code in MATLAB after 0.5 second 
CPU time on a PC with Intel® Celeron® CPU B815 (1.60 
GHz). 

Apart from the advantage that a variety of design 
specifications and constraints can be expressed through 
LMIs, due to the combination with the interval halving 
algorithm, it gives more flexibility to examine the solution 
during the entire design process. For example, it is easy to 
analyse the impact of the Tୢ 	value on the number of 
iteration steps or the impact of changing the relative 
accuracy on the solution.  One can easily perform 
experiments and get answers e.g. to the following 
questions: How does the iteration converge? How do the 
eigenvalues of the decision variable change? How close are 
they to the imaginary axis? Issues with such explicit 
conditions can be easily examined, step by step during the 
iterations, which can also be useful for better understanding 
the nature of switched systems.  
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