
102                                                                             PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 94 NR 7/2018 

Marcin PŁONKOWSKI1, Pavel URBANOVICH1,2 

The John Paul II Catholic University of Lublin, Poland (1), Belarusian State Technological University, Belarus (2) 
 

doi:10.15199/48.2018.07.25 
 

Using Full Covariance Matrix for CMU Sphinx-III Speech 
Recognition System 

 
 

Abstract. In this article authors proposed a hybrid system in which the full covariance matrix is used only at the initial stage of learning. At the further 
stage of learning, the amount of covariance matrix increases significantly, which, combined with rounding errors, causes problems with matrix 
inversion. Therefore, when the number of matrices with a determinant of 0 exceeds 1%, the system goes into the model of diagonal covariance 
matrices. Thanks to this, the hybrid system has achieved a better result of about 11%. 
 
Streszczenie. W niniejszym artykule autorzy zaproponowali system hybrydowy, w którym pełna macierz kowariancji wykorzystywana jest tylko w 
początkowym etapie procedury treningowej. W dalszym etapie uczenia, znacząco wzrasta liczba macierzy kowariancji, co w połączeniu z błędami 
zaokrąglania powoduje problemy z odwróceniem tego typu macierzy. Dlatego też, gdy liczba macierzy o wyznaczniku równym 0 przekracza 1%, 
system przechodzi do modelu wykorzystującego macierze diagonalne. Dzięki temu system hybrydowy osiągnął wynik lepszy o około 11%. 
(Wykorzystanie pełnej macierzy kowariancji w systemie rozpoznawania mowy CMU Sphinx III). 
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Introduction 

CMU Sphinx-III is one of the most popular speech 
recognition systems [1]. It works very well in continuous 
speech recognition tasks with a lot of words, regardless of 
speaker. However, to achieve satisfactory results, system 
must be trained on the appropriate set of utterances with 
the reference transcription.   
 The whole process of speech recognition by decoder 
starts with acquisition of utterance. Then, the extraction 
process is performed of the most desirable features (from 
the point of view of speech recognition system). Decoder 
analyzes these features using acoustic model, language 
model and vocabulary. Block diagram is shown in Fig.1. 
 

 
 

Fig.1. Block diagram of speech recognition system 
 

CMU Sphinx-III is a system that uses statistical 
methods. Namely, this system is based on a hidden Markov 
model (HMM). It is now the dominant solution for the most 
recently designed speech recognition systems. If we have a 
good learning set (of appropriate size and of appropriate 
quality) the system gives very good results (word error rate 
is approximately 15%).  

To obtain very good results training set size should take 
into account the following recommendations: 
 1 hour of recording for command and control for single 

speaker 
 5 hours of recordings of 200 speakers for command and 

control for many speakers 

 10 hours of recordings for a single speaker dictation 
 50 hours of recordings of 200 speakers for many 

speakers dictation 
 We briefly describe the signal processing front end of 
the Sphinx III speech recognition system. The front end 
transforms a speech waveform into a set of features to be 
used for recognition, specifically, mel-frequency cepstral 
coefficients (MFCC).  
The front end processing performed by the Sphinx-III: 
 pre-emphasis 
 windowing (Hamming window) 
 power spectrum 
 mel spectrum 
 mel cepstrum. 

Sphinx III uses the following features: 
 Sample rate: 16000 Hz 
 FFT Size: 512 
 Frame Size: 410 
 Window size: 25ms 
 Window shift: 10ms 
 Pre-emphasis coefficient: 0.97 

Sphinx III uses the following MFCC features: 
 12 MFCC (mel frequency cepstral coefficients) 
 1 energy feature 
 12 delta MFCC features  
 12 double-delta MFCC features 
 1 delta energy feature 
 1 double-delta energy feature 
 Total 39-dimensional features 

 The Sphinx III uses MFCC coefficients for each frame 
calculated in the same way.  
 The Sphinx-3 HMM trainer, goes through the following 
stages [2]: 

1. Initialization of Context Independent (CI) models 
a. Creation of model definition file for CI phones  
b. Initialization of models with flat distribution or 

based on previous segmentation (assignments of 
phonetic units to speech segments) 

2. Training of CI models 
a. Split training data into blocks and compute Baum-

Welch variables 
b. Normalize, that is, use the Baum-Welch variables 

to actually compute the updated transition 
probabilities, mixture weights, means, variances, 
etc. 
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c. Iterate Baum-Welch and normalization until 
convergence, i.e., until total likelihood changes 
less than threshold 

3. Initialization of Context-Dependent (CD) models 
a. Creation of model definition file for CD phones, by 

creation of all possible CD phones in the 
dictionary, and then pruning based on frequency 
in the training transcripts 

b. Initialization of models based on CI models 
4. Training of untied CD models 

a. Split training data into blocks and compute Baum-
Welch variables 

b. Normalize 
c. Iterate Baum-Welch and normalization until 

convergence 
5. Building trees 

a. Make linguistic questions 
b. Build classification and regression trees, so as to 

classify the untied states based on proximity 
6. Pruning trees 

a. Prune trees to the desired number of senones, that 
is, a number of tied states 

7. Initialization of tied CD models 
a. Creation of tied CD models definition 
b. Creation of initial set of models from the CI models 

8. Training tied CD models 
a. Split training data into blocks and compute Baum-

Welch variables 
b. Normalize 
c. Iterate Baum-Welch and normalization until 

convergence 
 
Covariance matrix 
 Sphinx III uses HMM with continuous observations 
modeled as multivariate Gaussian with a probability density 
function given as (1). 
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where: k - dimension of the feature vector, x - future vector, 
µ - mean of the feature vector, Σ - covariance matrix of the 
feature vector,   
 
So in order to calculate the probability functions we have to 
invert the covariance matrix. Due to the fact that we use 39-
dimensional features vectors, the covariance matrix will 
have a dimension of 39x39. The inverse operation of that 
matrix is computationally expensive. The second problem is 
the fact that, large amounts of training data are required for 
reliable full covariance estimation. If we do not have a very 
large dataset than the matrices are often poorly-
conditioned, and do not generalise well [3]. In addition, 
rounding errors that will occur during the calculation will 
lead a determinant of a matrix to very small values and 
consequently to 0. This makes it impossible to invert the 
matrix.  
 Despite this shortcomings, full covariance systems have 
been successfully used for large vocabulary ASR. The most 
notable example being in the 2004 IBM system [4], where 
the computational cost was reduced by aggressively 
pruning Gaussians during the full covariance likelihood 
computation. 
 In speech recognition, we frequently assume that the 
feature vector dimensions are all independent of each other 
[5]. Then we might reduce the covariance matrix to a 
diagonal form. The determinant of the diagonal matrix and 
its inverse are easy to compute. However, due to this 

simplification, we lose information about the correlation of 
features. 
 One of the compromise methods is the use of block 
block-diagonal covariance matrix [6]. However, we will have 
to deal with the same problems described in the full 
covariance matrices only to a lesser extent.  
 The matrix inverse procedure is implemented in the 
Baum-Welch algorithm. So we see that stages: 2. ("Training 
of CI models"), 4. ("Training of untied CD models") and 8. 
("Training tied CD models") are important for us. If the 
number of matrices with a determinant of 0 increases 
sharply, it will signal to us that it would be a good idea to 
move from full covariance matrices to diagonal covariance 
matrices. 
 In this article we propose hybrid learning method. 
Namely, the full covariance matrices will be used only in the 
first stage of learning (stage 2: "Training of CI models"). In 
this stage we have only 102 matrices (because we have 34 
phonemes x 3 states). In the stage 4: "Training of untied CD 
models" we have 4839 matrices (because we have 1579 
triphones x 3 states + 34 monophone x 3 states). So in this 
step we use the diagonal covariance matrices. These 
matrices are formed by selecting elements only from the 
main diagonal.  
 
Tests and results 
 In this article we analyze the speech recognition 
accuracy based on the publicly available AN4 database [7]. 
The database has 948 training and 130 test utterances. All 
data are sampled at 16 kHz, 16-bit linear sampling. All 
recordings were made with a close talking microphone.  
 The directory with training data has 74 sub-directories, 
one for each speaker. 21 of them are female, 53 are male. 
The total number of utterances is 948, and the average 
duration is about 3 seconds, totaling a little less than 50 
minutes of speech. The directory with test data has 10 sub-
directories, one for each speaker. 3 of them are female, 7 
are male. The total number of utterances is 130, totaling 
around 6 minutes of speech. 
 There is a protection against inversion of a matrix with a 
determinant of 0 in the Sphinx III system. Namely, if the 
determinant is equal to or smaller than 0, the off-diagonal 
elements are set to 0. The elements from the main diagonal 
will be set to a value of at least 0.0001. 
 However, in such a situation we lose a significant 
amount of information. Therefore, we need to choose the 
right moment in which it is worth to replace the full 
covariance matrices into diagonal covariance matrices. 
 In step 2 ("Training of CI models"), no matrix with a 
determinant of 0 was recorded. In step 4 ("Training of untied 
CD models") we recorded as many as 42.44% of the 
matrices with a determinant equal or less than 0. Such a 
large number of matrices (with a determinant of 0) distorts 
the learning procedure. Therefore, the matrices conversion 
(from full to diagonal) should take place after step 2. 
 We estimate the accuracy of using number of incorrectly 
recognized words WER (word error rate), which is defined 
as: 

(2)   
N
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where: S is the number of substitutions, I is the number of 
insertions, D is the number of deletions, N is the number of 
words in the reference. 
 
 The word error rate (WER) is the most common way to 
evaluate speech recognizers. The word error rate is defined 
as the sum of these errors divided by the number of 
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reference words. It is worth noting that according to the 
formula (2) WER value may be greater than 100%. 
 When reporting the performance of a speech recognition 
system, sometimes word accuracy (WAcc) is used instead: 
 

(3)  WERWAcc  1  
   
 The error for the baseline system is equal to 14.8771% 
(WER). In this situation we use a diagonal covariance 
matrices. Our tests we also performed with the use of a full 
and the block-diagonal matrices. These standard training 
procedures we compared with our hybrid learning method. 
These results can be seen in Table 1.  
 
Table 1. Word error rate (WER) depending on the type of 
covariance matrix 

Covariance 
matrix 

Diagonal 
Block-

diagonal 
Full 

Hybrid 
(Full to 

Diagonal) 
WER 14.8771% 14.62% 20.43984% 13.58344% 

 
 The first surprise may be that the worst result was 
obtained for the full covariance matrix (WER over 20%). 
However, it is worth recalling that in the 4th learning stage, 
as many as 42% of the matrix had a determinant of 0. 
 In the 4. step, we Iterate Baum-Welch algorithm and 
normalization until convergence. So it is important to know 
precisely what percentage of the matrix has a determinant 
of 0. In Table 2, we see that only in the first step, the 
number of matrices with a determinant of zero is at a 
relatively low level. And in step 2 it already reaches nearly 
29%. 
 
Table 2. Percentage of matrices with zero determinant 

Step 1 2 3 
% matrices with 
zero determinant 

0,018% 28,96% 42,51% 

 
 Therefore, it is best to move to the diagonal form after 
the first step of the Baum-Welch algorithm. In practice, this 
is accomplished by monitoring the number of matrices with 
a determinant of 0. If this value exceeds 1% then we need 
to go back to the previous step and change the form of the 
covariance matrix to diagonal. This algorithm step should 
be repeated but for the diagonal covariance matrix. 
 In this situation we will get even better results, namely 
WER will reach 13.19534% (see Table 3). This means 
improving the recognition quality (relative to the baseline 
system) by 11.3%. 
 
Table 3. Word error rate (WER) depending on the type of 
covariance matrix 

Covariance 
matrix 

Diagonal 
Block-

diagonal 
Full 

Hybrid2 
(Full to 

Diagonal) 
WER 14.8771% 14.62% 20.43984% 13.19534% 

 
The second important parameter is the duration of the 
training algorithm. We can expect the longest execution 
time for a model using the full covariance matrix and the 
shortest for the diagonal covariance matrix model. These 
results can be seen in Table 4. 
 
Table 4. Duration of the training algorithm 

Covariance 
matrix 

Diagonal Full 
Hybrid 
(Full to 

Diagonal) 

Hybrid2 
(Full to 

Diagonal) 

Time 
(mm:ss) 

3:55 26:22 7:42 8:17 

As expected, the best time was obtained for the model 
using the diagonal covariance matrix. In this case, the 
learning algorithm's duration was almost 4 minutes. 
Whereas for the model using the full covariance matrix, the 
algorithm's duration is over 26 minutes. The operating times 
of our algorithms are about twice as long as for a model 
with the diagonal matrix but about 3 times shorter than for 
the full covariance matrix. 
 
Conclusion and future work 
 In this article authors analyzed use of full covariance 
matrix in speech recognition systems. The use of this type 
of matrix involves many problems, which in practice often 
worsen the results of the system. By using only a diagonal 
matrix, we lose a great deal of information about the 
correlation of learning vector coefficients. Hence, the 
authors proposed a hybrid system in which the full 
covariance matrix is used only at the initial stage of 
learning. At the further stage of learning, the amount of 
covariance matrix increases significantly, which, combined 
with rounding errors, causes problems with matrix inversion. 
Therefore, when the number of matrices with a determinant 
of 0 exceeds 1%, the system goes into the model of 
diagonal covariance matrices.  
 Thanks to this, the hybrid system has achieved a better 
result of about 11%. The disadvantage of this solution is 
almost twice the length of the algorithm's time. 
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