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Abstract. Spectral compression is an effective robust feature extraction technique to reduce the mismatch between training and testing data in 
feature domain. In this paper we propose a new MFCC feature extraction method with non-uniform spectral compression for speech recognition in 
noisy environments. In this method, the energies of the outputs of the mel-scaled band pass filters are compressed by different root values adjusted 
based on information from the back-end of speech recognition system. Using this new scheme of speech recognizer based non-uniform spectral 
compression (SRNSC) for mel-scaled filter-bank-based cepstral coefficients, substantial improvement is found for recognition in presence of different 
additive noises with different SNR values on TIMIT database, as compared to the standard MFCC and features derived with cubic root spectral 
compression. 
Streszczenie. Kompresja spektralna jest efektywną i niezawodną techniką wyodrębniania cech w celu zmniejszenia niedopasowania między danymi 
uczącymi i testowymi w domenie cech. W tym artykule proponujemy nową metodę wyodrębniania cech MFCC z niejednorodną kompresją 
spektralną do rozpoznawania mowy w hałaśliwym otoczeniu. W opisywanej metodzie, energie wyjść pasmowych filtrów skali melowej są 
kompresowane przez różne wartości bazowe wyznaczone na podstawie informacji z back-endu systemu rozpoznawania mowy. Stosując ten nowy 
schemat niejednorodnej kompresji spektralnej (SRNSC) opartej na rozpoznawaniu mowy dla współczynników cepstralnych opartych na banku filtrów 
o skali melowej, stwierdzono znaczną poprawę rozpoznawania w obecności różnych szumów addytywnych o różnych wartościach SNR z bazy 
danych TIMIT, w porównaniu do standardowego MFCC i cech wyznaczonych za pomocą pierwiastkowej kompresji spektralnej. (Niejednorodna 
kompresja spektralna do odpornej ekstrakcji cech MFCC). 
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Introduction 
The performance of speech recognition degrades 

dramatically in the presence of noise, due to spectral 
mismatch between the training and testing data. Therefore, 
robust speech recognition in noisy environment is still a 
challenging problem. To solve this problem, many 
compensation techniques have been proposed by 
researchers. In general, a compensation technique can be 
applied in the signal, feature or model space [1]. 

This paper focuses on the compensation in feature 
domain. Spectral compression is an effective robust feature 
extraction technique to reduce the mismatch between 
training and testing data in feature domain. In conventional 
Mel-frequency cepstral coefficients (MFCC) feature 
extraction, a logarithm function is applied to Mel filter bank 
energies in order to reduce their dynamic range. Root 
cepstral analysis [2] replace log function with a constant 
root function and yields RCC coefficients. RCC coefficients 
have shown better robustness against the noise. In RCC 
method compressed speech spectrum is computed as 
shown in (1): 

(1)  10   ,   )()(  mPmPC  

where )(mPC  is the compressed spectrum, )(mP  is the 

original spectrum,  is the compression factor and m is the 

filter bank index. 
In (1), the compression factor is fixed for all the 

frequency bands under the assumption that the noise 
contamination is same throughout all frequency bands, 
although real world noise is mostly colored and does not 
affect the speech signal uniformly over the entire spectrum. 
Therefore, the compression factor should be adjusted for 
each band. Also, from the psychoacoustic point of view, 
using constant compression root for all frequencies is sub-
optimal [3]. Therefore, relation (1) is extended as follows: 

(2)  1)(0   ,   )()( )(  mmPmP m
C   

 

where the compression factor is dependent on the 
frequency band and named non-uniform spectral 

compression. Even if the noise is stationary, this parameter 
should be calibrated at the beginning. In conventional 
methods [3,4,5], the compression factor is adjusted for each 
band according to the SNR instead of recognition results 
that seem more conscionable. In SNR-based approaches 
there is no feedback from recognition stage to the 
compensation stage and they explicitly need to SNR 
estimation block. Thus, its performance depends on SNR 
estimation accuracy. However, the speech recognition is a 
classification problem and this seems reasonable that any 
adjustment in parameters of compensation techniques is 
resulted in improvement in recognition performance [6,7]. 
Compensation method improves speech recognition 
accuracy, only when it generates the sequence of feature 
vectors which maximize the likelihood of the correct 
transcription with respect to other hypothesis. Therefore, it 
seems logical that each parameters calibration of 
compensating techniques in front-end stage of the speech 
recognition systems be according to the recognition criteria 
instead of waveform level criteria such as signal to noise 
ration. 
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Fig.1. An example of the figure inserted into the text 
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In this paper a novel framework for applying non-uniform 
spectral compression in front-end of the speech recognition 
systems is proposed. We show that by incorporating the 
speech recognition system into compression factor 
adjusting process, the recognition rate is further improved. 
For implementing this scheme, we use an utterance the 
transcription of which is given and formulate the relation 
between compression factor and likelihood of the correct 
model. The proposed method has two phases, adaptation 
and decoding. In adaptation phase, compression factor is 
adjusted based on maximizing acoustic likelihood of the 
correct transcription and in decoding phase this optimized 
compression factor is applied for all incoming speech. Fig. 1 
shows our proposed method for removing noise effects 
from MFCC features in speech recognizer-based 
framework. The reminder of this paper is organized as 
follows. In the next section we derive the framework for 
speech recognizer based spectral compression. Algorithm 
of proposed framework is described in the third section. 
Extensive experiments to verify the effectiveness of 
presented framework are presented in the following section 
and finally we present summary of our work in scjematically 
depicted in Fig. 1. 

 
Speech Recognizer Based Non-Uniform Spectral 
Compression (SRNSC). 

Conventional spectral compression techniques use the 
waveform-level criteria such as signal to noise ratio to 
calibrate its parameter. According to reasons are mentioned 
in the introduction, using recognition error rate criteria 
instead of waveform level criteria for adjusting spectral 
over-subtraction parameters seems more promising. One 
logical way for achieving to this goal is to select spectral 
compression factor so as to maximize acoustic likelihood of 
the correct hypothesis. This will increase the distance 
between the acoustic likelihood of the correct hypothesis 
and other competing hypothesis, so the probability that 
utterance be correctly recognized will be increased. Hence, 
in following the relation between spectral compression 
vector in pre-processing stage with acoustic likelihood of 
the correct hypothesis in decoding stage is formulated. 
These formulas depend on feature extraction algorithm and 
acoustic unit model. In this work, MFCC algorithm and 
hidden Markov model with mixture of Gaussian in each 
state are used for feature extraction and modeling of the 
acoustic unit respectively. 

Speech recognition systems based on the statistical 
model find the acoustic unit sequence most likely to 
generate observed feature vectors  tzz ,...,1Z  extracted 

from the improved speech signal. These observed features 
are a function of both incoming speech signal and also 
spectral compression vector. Speech recognizer gets the 
most likely hypothesis based on the optimal Bayes 
classification formula:  

(3)  )())((maxarg wPwZPw
w

γ


 

 

where the observed feature vectors is a function of spectral 
compression vector γ . In this formula )|)(( wZP γ  and 

)(wP  are the corresponding acoustic and language score, 

respectively. Our goal is to find vector γ achieving the best 

recognition performance. Similar to either speaker or 
environmental adaptation methods, for adjusting γ , we 

need some adaptation data with a known transcription. We 
assume that the correct transcription of the utterance Cw  is 

known. So the value of )( CwP  can be ignored because this 

value is constant regardless of the value of γ . We can then 

maximize equation (3) with respect to γ  as:  

(4)  )))(((maxarg CwZP γγ
γ




 

 

In an HMM based speech recognition the acoustic 
likelihood is estimated by single most likely state sequence. 
If CS represents all state sequences in the combinational 

HMM and s represents single most likely state sequence, 
then the Maximum likelihood estimation of γ  is written as: 

(5)  






    





i i
Ciiii

Ss
wssPszP

C

)),(log()))((log(maxarg 1
,

γγ
γ

 

 

Regarding to (5) for getting γ̂  acoustic likelihood of the 

correct transcription should be jointly maximize with respect 
to the state sequence and γ  parameters. This joint 

optimization should be performed in an iterative manner.  
Noisy speech is passed to the spectral subtraction filter 

and feature vector )(γZ is extracted given the known γ . 

Then optimal state sequence  tsss ,...,1 is computed 

using (5), given the correct transcription Cw . State 

sequence ŝ  simply can be computed using Viterbi 

algorithm. Given the known state sequence ŝ  we want to 

find γ̂  as: 

(6)  
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There is not a closed-form solution for computing 
optimal γ  for a given state sequence, so we use non-linear 

optimization. 
 

Algorithm 
In this section we present a novel approach for adjusting 

spectral compression vector so as to maximize acoustic 
likelihood of the correct transcription. Here we should 
answer a question. If the correct transcription was known a 
priori, there would be no need for recognition. For 
answering this question we should mention that the correct 
transcription is only needed in the adaptation phase and in 
the decoding phase these parameters are fixed. At first user 
says an utterance with a priori known transcription then the 
utterance is passed through the spectral compression block 
fixed with initial parameters. After that most likely state 
sequence is generated using Viterbi algorithm. Then the 
optimum spectral compression vector is produced given the 
state sequence. Recognition is performed on validation set 
with using this optimized filter if the desired error rate is 
satisfied, the algorithm is finished otherwise the new state 
sequence is estimated. In an iterative manner, the spectral 
compression vector which maximizes the total log likelihood 
of the utterance with a known transcription is found. Feature 
vector at first is extracted from the improved speech signal 
and then the log likelihood is computed given the known 
state sequence. If the likelihood does not converge, the 
gradient of the spectral compression vector is computed, 
and the spectral compression vector is updated. Spectral 
compression is performed with using this updated vector 
and the new feature vectors are extracted. This process 
repeats until the convergence condition is satisfied. 

In proposed algorithm like speaker and environment 
adaptation techniques, adaptation of spectral compression 
vector can be implemented either in a separate off-line 
session or by embedding an incremental on-line step to the 
normal recognition mode of system. In off-line adaptation as 
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explained in above, the user is aware of adaptation, 
typically by performing a special adaptation session, while 
in on-line adaptation the user may not even know that 
adaptation is carried out in Fig. 2 and Fig. 3. 
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Fig.2. Flowchart of the proposed algorithm 
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Fig.3. Flowchart of spectral compression vector optimization 

 
Experiments 

This section presents the experiments evaluations of the 
proposed algorithms. Throughout this paper, phoneme error 
rate is used to evaluate the performance of the proposed 
algorithm. The error rate is computed as follows: 

(7)  
Phonemes ofNumber  Total

InsDelSub
(%)Error


  

 

where “Sub” is the number of substitutions, “Del” is the 
number of deletions, and “Ins” is the number insertions.  

Database Definition. In order to assess the effectiveness 
of the proposed algorithm, speech recognition experiments 
were conducted on the TIMIT database. The test sets is 
obtained by the artificially adding of five types of noises 
(Alarm, Brown, Multi-Talk, Volvo and White noise) from the 
NOISEX-92 database [6] to a subset of the test set of TIMIT 
database. For each noise type, the testing data were 
contaminated at several SNRs from 0dB to 20dB at the 
interval of 5dB to produce various noisy test sets. 
Sentences were corrupted by adding noise scaled on a 
sentence-by-sentence basis to an average power value 
computed to produce the required SNR. 

Baseline Speech Recognizer. Speech recognition 
experiments conducted using NEVISA [8], a large 
vocabulary, speaker-independent, continuous HMM-based 
speech recognition system has been developed at speech 
processing lab of computer engineering department of 
Sharif University of technology. Experiments have been 
done in the phoneme recognition operational modes of 
NEVISA system. The reason for performing phoneme 
recognition instead of word recognition is that in the former 
case, the recognition performance lies primarily on the 
acoustic model. For word recognition, the performance 
becomes sensitive to various factors for example the 
language model type. 

Each phoneme was modeled by six state continuous 
density left-to-right HMMs. In addition, silence was explicitly 
modeled by a HMM. The observation densities were 
mixtures of eight multivariate Gaussian distributions with 
diagonal covariance matrices. Forward and skip transitions 
between the states and self-loop transitions were allowed. 
Thirty-six dimensional feature vectors were used: C[1] to 
C[12] derived from a mel-spaced filter-bank of 25 filters, and 
their first and second derivatives to make up vectors of 36 
coefficients per speech frame.  

 
Recognition Results 

In all of our experiments, one sentence of test set is 
used for optimization phase. After the spectral compression 
vector was optimized, speech recognition is performed on 
other sentences of test set using this optimized vector. 
Table 1 shows phoneme error rate in each test condition. 
For evaluating our algorithm, its results are compared with 
MFCC and RCC features which derived with log and cubic 
root spectral compression.  

 
Table 1. Phoneme recognition accuracy (%) on TIMIT database 

Noise Type Method 0dB 5dB 10dB 15dB 20dB

Alarm 
MFCC 19.46 28.95 37.06 46.07 52.91
RCC 18.16 27.47 38.21 47.06 53.33

SRNSC 20.42 30.77 39.48 48.15 54.37

Brown 
MFCC 40.6 48.53 56.46 61.92 63.96
RCC 40.52 48.89 57.29 63.16 64.77

SRNSC 42.12 50.31 57.56 63.98 65.05

Multi-Talk 
MFCC 13.99 23.6 34.35 43.78 51.89
RCC 13.04 23.8 35.05 43.99 52.45

SRNSC 14.98 24.17 35.44 45.17 53.59

Volvo 
MFCC 44.44 48.59 53.39 57.36 61.02
RCC 43.94 48.65 53.53 58.93 62.19

SRNSC 46.25 51.51 55.53 59.38 63.04

White 
MFCC 3.72 8.47 15.68 23.96 31.77
RCC 2.11 6.61 14.90 24.72 31.98

SRNSC 3.86 9.91 16.38 25.31 33.09
 
From the experimental results, we observed the 

following facts. With regards to the difference between 
noise type and SNR, the result shows that the proposed 
method was capable to improve recognition performance 
compared to classical methods. In some cases, RCC 
method achieves lower performance than the baseline 
(MFCC). This is due to some frequency components under-
compressing or over-compressing caused by not adjusting 
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the spectral compression vector and destroy the 
discriminability in pattern recognition. The mismatch 
reduces the effectiveness of the clean trained acoustical 
models and causes the recognition accuracy to fall. Table 1 
Phoneme recognition accuracy (%) on TIMIT database. 

 
Conclusions 

We proposed a speech recognizer based non-uniform 
spectral compression instead of conventional methods. 
Experimental results on the TIMIT speech database have 
revealed the effectiveness of it in presence of different 
additive noises with different SNR values. As our future 
work, we plan to combine our proposed algorithm with other 
robustness methods and test it in real conditions.  
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