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A proposed round robin scheduling algorithm for enhancing 
performance of CPU utilization 

 
 

Abstract. An important problem of an operating system is CPU scheduling. This paper proposes round robin (RR) scheduling algorithm, named 
DevRR, with new dynamic time quantum (TQ) computed by the standard deviation and average burst time of each process in a queue. Performance 
of DevRR is compared to the standard RR, PRR, and BRR in term of decreasing of an average waiting time (AWT), an average turnaround time 
(ATT), and number of context switches (NCS). Results can reduce 22.97% of AWT, 22.13% of ATT, and 30.26% of NCS for 50-process data set. 
 
Streszczenie. W artykule zaproponowano algorytm procesora z dynamicznym czasem kwantowym określanym jako odchyłka standardowa i średni 
czas impulsu każdego procesu w kolejkowaniu. Właściwości algorytmu porównano z innymi standardowymi metodami pod kątem oceny czasu 
oczekiwania. Algorytm karuzelowy harmonogramu procesora poprawiający jego szybkość 
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Introduction 
Generally, a computer system consists of hardware, 

software, user, and data set [1]. The main software is the 
system software named as Operating System (OS) that can 
directly manage system resources and environment. An 
important problem of OS is CPU scheduling in order to use 
more highly performance of CPU [1, 2] focused on average 
waiting time (AWT), average turnaroud time (ATT), and 
number of context switches (NCS) that means swap-in and 
swap-out CPU of processes. A process is a job in the ready 
queue to wait for utilizing CPU followed a sequence. CPU 
scheduling algorithm comprises several methods: first come 
first served (FCFS), short job first (SJF), priority queue 
(PQ), shortest remaining time (SRT), and round robin (RR). 

FCFS algorithm is a easiest method. Limitation of this 
method is that if the current process takes a long time to 
occupy CPU, other processes in the ready queue also have 
to wait for a long time until ending complete execution of the 
current process. SJF algorithm discusses that if any 
process has a shorter burst time, a such process is firstly 
executed. Disadvantage of this method is processes in the 
ready queue is never executed if the new comming process 
has a shorter burst time. PQ algorithm focuses on the 
priority of process based on a job property. Limitation of this 
method is that if the new comming process gets a higher 
priority, all processes in the ready queue is never executed. 
A such queue is a preemptive queue. SRT algorithm is 
similar to SJF. When the current process must connect I/O 
devices, this process is cancelled CPU occupancy. Then 
the next process that has shortest remaining burst time is 
selected to occupy CPU. The standard RR algorithm 
defines a static time quantum (TQ) to execute processes for 
each round. Therefore, the main point of RR method is an 
appropriate time quantum. If a time quantum is set to more 
long time, it affects more increasing value of AWT and ATT 
that means unsuitability. In contrast, if a time quantum is set 
to less short time, it affects more increasing value of NCS 
that also means unsuitability. 

However, RR algorithm is very popular [2] because it 
can strongly provide fairness for each process in the ready 
queue and ensure that all processes will be executed within 
a time quantum [2, 3]. Therefore, this paper proposes CPU 
scheduling algorithm based on the standard RR algorithm 
concept. Whereas the standard RR algorithm is operated 
with a static time quantum that is the average burst time 
(ABT), a proposed RR algorithm is operated with a dynamic 
time quantum. Performance analysis of CPU utilization 
considers the minimum value of AWT, ATT, and NCS [1, 3]. 

Related researches 
Ahad [4] has adjusted the standard RR with B and K 

value. B value was computed from B = integer of (BT/TQ), 
where BT was a burst time, TQ was a time quantum. When 
B = 1, a process is executed by FCFS algorithm, but when 
B > 1, a process is executed by the standard RR algorithm. 
Moreover, K value was computed from K = ceiling of 
(average of (BT%TQ)), and TQ = TQ+K for a new time 
quantum in the next round. Mostafa [5] defined a new time 
quantum between the minimum and maximum value of BT 
in each round. Behera [6] proposed a new time quantum 
with rearranging all processes in the ready queue and 
assigned the median of the burst time to a new time 
quantum for the next round (it is called BRR algorithm). 
Mohanty [7] presented the burst time of the centered 
process in the ready queue to a new time quantum without 
rearranging processes in the ready queue. Matarneh [8] 
proposed a new time quantum with the burst time of the 
running process for the next round. Singh [9] defined a new 
time quantum with a double of the lowest burst time of 
processes in the ready queue. Pradhan [10] proposed a 
dynamic time quantum with the average of the remaining 
burst time for each round (it is called PRR algorithm). 
 
A proposed scheduling algorithm concept 

A proposed round robin scheduling algorithm, named 
DevRR, presents a new idea about calculating value of a 
time quantum (TQ). DevRR defines a new dynamic time 
quantum from the average burst time and the standard 
deviation (SD) of all burst time values in the ready queue 
[11, 12]. We emphasize the SD value for a data set of all 
burst times in each execution round. If SD is the greater 
value, it shows that all burst time values are distributed from 
the mean. On the other hand, if SD is the smaller value, it 
shows that all burst time values are approached to the 
mean. Therefore, DevRR algorithm will already calculate an 
appropriately dynamic time quantum for this data set of the 
burst time. Relation of the mean, the SD value, and the 
burst time of all processes in the ready queue [2, 12, 13] 
presents at the equation (1). 
 

(1)        )min(BTTQ    
 

where: TQ is a time quantum, µ is ABT, σ is SD, BT is the 
burst time, min(BT) is the minimal burst time for each round. 
For DevRR algorithm concept, the first step, it must verify 
the size of the ready queue. If the ready queue is empty, it 
finishes the execution. The second step, it searches for the 
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minimum burst time of processes in the ready queue. The 
third step, it calculates ABT. The fourth step, it calculates 
the variance for a data set of the burst time in this execution 
round. The fifth step, it calculates the SD value of this data 
set. In the last step, it calculates the optimized time 
quantum with two conditions; 1) if SD is greater than a half 
of ABT, TQ is set with the mean + SD + the minimum burst 
time. In this case, it means that this data set of the burst 
time is distributed from the mean, so TQ must be the larger 
value showed at the equation (2); 2) if SD is smaller than a 
half of ABT, TQ is set with the mean + SD + 1. In this case, 
it means that this data set of the burst time is approximate 
to the mean, so TQ must be the smaller value showed at 
the equation (3). It repeats all steps until the ready queue is 
empty. After that, it computes AWT, ATT, and NCS to 
analyze CPU utilization performance. 
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Where: n is amount of processes in the ready queue (size 
of queue), and i is a process ID. 
 

Pseudo code for DevRR scheduling algorithm is shown 
in this below. 
 
// --- DevRR Algorithm --- // 
1. TQ = 0, AWT = 0, ATT = 0, NCS = 0 //The initial values 
2.  SizeOfQueue = Queue.getSize() 
3. if (SizeOfQueue = 0) go to 25. 
4.  Sum = 0 
5.  AverageBurstTime = 0 //The mean for each round 
6.  Min = SizeOfQueue 
     //To search for the minimum burst time 
7.  for (i = 0; i < SizeOfQueue; i++) { 
8.  BT = Queue.getBurstTime[i] 
9.  if (BT < Min) then Min = BT 
10.  Sum += BT 
11. } 
12. AverageBurstTime = Sum/SizeOfQueue 
13. Total = 0 
 //The variance for a data set of the burst time in queue 
14. for (i = 0; i < SizeOfQueue; i++) { 
15.  BT = Queue.getBurstTime[i] 
16.  BT = BT – AverageBurstTime 
17.  Total += (BT  BT) 
18. } 
 //To calculate the standard deviation (SD) 
19. SD = Math.sqrt(Total/(SizeOfQueue – 1 )) 
 //To calculate the new optimized time quantum 
20. if (SD > (AverageBurstTime/2)) 
21.  TQ = AverageBurstTime + SD + Min 
22. else 
23.  TQ = AverageBurstTime + SD + 1 
24. Go to 2. 
25. Compute AWT, ATT, NCS 
26. Stop 
 

Experiments 
According to the related researches, we consider three 

algorithms including PRR, BRR, and DevRR compared with 
the standard RR algorithm that focuses on the minimal 

value of AWT, ATT, and NCS [1, 3]. For this experimental 
simulation, a data set of an arrival time and a burst time for 
each process are randomized by an object engine tester 
coded by Java [13, 14] where an arrival time value of each 
process is between 1 and 5 millisecond (ms), and a burst 
time value of each process is between 1 and 60 ms [14]. 
Moreover, we also define the experiment with seven data 
sets classified by amount of processes: 10, 50, 100, 500, 
1000, 5000, and 10000 processes [12]. Workflow of an 
object engine tester is shown in Fig. 1. 
 

Start

To generate an arrival time and
a burst time for each process 

To define classes and objects for 
round robin algorithm concept

Standard RR
algorithm

BRR
algorithm

PRR
algorithm

DevRR
algorithm

To display results of 
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Stop

To run and compare all RR algorithms

 
 

Fig. 1. Workflow of an object engine tester 
 
Results 

An example of 10-process data set that is generated by 
an object engine tester is shown in Table 1. 
 

Table 1. An example of 10-process data set 
Process ID Arrival time (ms) Burst time (ms) 

#00001 0 39 
#00002 1 17 
#00003 6 59 
#00004 10 32 
#00005 15 38 
#00006 20 10 
#00007 22 21 
#00008 26 30 
#00009 27 47 
#00010 32 35 

 

From Table 1, an arrival time of process ID #00001 is 
always generated as 0 ms. Its ID is the first process in the 
ready queue, therefore it has no an arrival time. 
Experimental results of all data sets is shown in Table 2. 
 From table 2, it shows a comparison of all data set 
results for PRR, BRR, and DevRR algorithm compared with 
the standard RR based on 100%. The better results are 
shown values marking with the minus sign and the green 
color. To discuss an overall AWT of all data sets, the best 
performance is DevRR algorithm that can make the most 
AWT reduction 22.97% for 50-process data set. 

 
 
  



28                                                                                 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 94 NR 4/2018 

Table 2. Results of all data sets 
Data 
set 

Algorithm TQ (ms) 
AWT ATT NCS 

(ms) % % (+/-) (ms) % % (+/-) (times) % %(+/-) 

10 

Standard 
RR 

33 177.80 100.00% 0.00% 210.60 100.00% 0.00% 14 100.00% 0.00% 

PRR 33,11,9,6 176.20 99.10% -0.90% 209.00 99.24% -0.76% 17 121.43% +21.43% 
BRR 33,6,14,6 174.70 98.26% -1.74% 207.50 98.53% -1.47% 17 121.43% +21.43% 
DevRR 48,11 146.90 82.62% -17.38% 179.70 85.33% -14.67% 10 71.43% -29.57% 

50 

Standard 
RR 

31 798.96 100.00% 0.00% 829.20 100.00% 0.00% 76 100.00% 0.00% 

PRR 31,13,9,6,1 809.28 101.29% +1.29% 839.52 101.24% +1.24% 91 119.74% +19.74% 
BRR 33,10,7,9,1 789.38 98.80% -1.20% 819.62 98.84% -1.16% 89 117.11% +17.11% 
DevRR 50,11 615.46 77.03% -22.97% 645.70 77.87% -22.13% 53 69.74% -30.26% 

100 

Standard 
RR 

34 1981.92 100.00% 0.00% 2015.62 100.00% 0.00% 151 100.00% 0.00% 

PRR 34,14,7,4,1 2027.81 102.32% +2.32% 2061.51 102.28% +2.28% 187 123.84% +23.84% 

BRR 
36,15,4,3,1,
1 

2018.55 101.85% +1.85% 2052.25 101.81% +1.81% 184 121.85% +21.85% 

DevRR 52,7,1 1672.50 84.39% -15.61% 1706.20 84.65% -15.35% 121 80.13% -19.87% 

500 

Standard 
RR 

30 8445.78 100.00% 0.00% 8475.00 100.00% 0.00% 746 100.00% 0.00% 

PRR 
30,14,8,5,2,
1 

8635.01 102.24% +2.24% 8664.23 102.23% +2.23% 913 122.39% +22.39% 

BRR 
30,13,7,5,3,
1,1 

8652.10 102.44% +2.44% 8681.32 102.43% +2.43% 955 128.02% +28.02% 

DevRR 47,11,2 7329.95 86.79% -13.21% 7359.17 86.83% -13.17% 586 78.55% -21.45% 

1000 

Standard 
RR 

32 19224.13 100.00% 0.00% 19255.75 100.00% 0.00% 1510 100.00% 0.00% 

PRR 32,15,7,4,2 19688.73 102.42% +2.42% 19720.36 102.41% +2.41% 1856 122.91% +22.91% 

BRR 
33,13,7,3,3,
1 

19603.56 101.97% +1.97% 19635.17 101.97% +1.97% 1914 126.75% +26.75% 

DevRR 50,10 17028.87 88.58% -11.42% 17060.49 88.60% -11.40% 1163 77.02% -22.98% 

5000 

Standard 
RR 

31 88025.08 100.00% 0.00% 88055.60 100.00% 0.00% 7454 100.00% 0.00% 

PRR 31,15,8,4,2 90352.09 102.64% +2.64% 90382.70 102.64% +2.64% 9245 124.03% +24.03% 

BRR 
31,15,7,4,2,
1 

90374.74 102.67% +2.67% 90405.31 102.67% +2.67% 9488 127.29% +27.29% 

DevRR 49,11 79275.41 90.06% -9.94% 79306.03 90.06% -9.94% 5874 78.80% -21.20% 

10000 

Standard 
RR 

31 175586.83 100.00% 0.00% 175617.73 100.00% 0.00% 14867 100.00% 0.00% 

PRR 31,15,8,4,2 179907.30 102.46% +2.46% 179937.75 102.46% +2.46% 18359 123.49% +23.49% 
BRR 31,14,8,4,2,1 180063.23 102.55% +2.55% 180094.06 102.55% +2.55% 18995 127.77% +27.77% 
DevRR 49,10,1 158772.77 90.42% -9.58% 158803.44 90.43% -9.57% 11912 80.12% -19.88% 

Remark: the plus sign (+) is the increased percentage (not good), the minus sign (-) is the decreased percentage (good) 
 
 In addition, to discuss an overall ATT of all data sets, 
the best performance is DevRR algorithm that can make the 
most ATT reduction 22.13% for 50-process data set. For an 
overall NCS of all data sets, the best performance is also 
DevRR algorithm that can make the most NCS reduction 
30.26% for 50-process data set. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Average waiting time for all data sets 
 
 In Fig. 2, it shows a comparison of AWT values for PRR, 
BRR, and DevRR algorithm compared to the standard RR. 
The best performance algorithm is DevRR that can 
compute AWT as 77.03% (22.97% reduction) for 50-process 
data set, 82.62% (17.38% reduction) for 10-process data 
set, and 84.39% (15.61% reduction) for 100-process data 
set respectively. Moreover, other data sets indicate that the 
approximate AWT value is 88.96% (11.04% reduction). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Average turnaround time for all data sets 
 

 In Fig. 3, it shows a comparison of ATT values for PRR, 
BRR, and DevRR algorithm compared to the standard RR. 
The best performance algorithm is DevRR that can 
compute ATT as 77.87% (22.13% reduction) for 50-process 
data set, 84.65% (15.35% reduction) for 100-process data 
set, and 85.33% (14.67% reduction) for 10-process data set 
respectively. Moreover, other data sets indicate that the 
approximate ATT value is 88.98% (11.02% reduction). 
 In Fig. 4, it shows a comparison of NCS values for PRR, 
BRR, and DevRR algorithm compared to the standard RR. 
The best performance algorithm is DevRR that can 
compute NCS as 69.74% (30.26% reduction) for 50-process 
data set, 71.43% (29.57% reduction) for 10-process data 
set, and 77.02% (22.98% reduction) for 1000-process data 
set respectively. Moreover, other data sets indicate that the 
approximate NCS value is 79.40% (20.60% reduction). 
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Fig. 4. Number of context switches for all data sets 
 
 According to experimental results for all data sets in 
table 2, it indicates that 50-process data set gets the best 
result where TQ are 50ms and 11ms for the first and the 
second round respectively. Therefore, table 3 shows the 
top-three algorithms for 50-process data set that enhance 
the performance of CPU utilization.  
 
Table 3. Top-three algorithms for 50-process data set 

Items 
Top-three round robin algorithms 

No.1 No.2 No.3 
AWT DevRR BRR Standard RR 
ATT DevRR BRR Standard RR 
NCS DevRR Standard RR BRR 

 
 In addition, DevRR algorithm may have the restriction in 
some cases. For example, if a burst time value for each 
process nearly approaches to an average burst time (ABT), 
DevRR algorithm is probably not an appropriate method for 
these data sets. However, this situation is rarely occurred. 
 
Conclusions 

We propose round robin scheduling algorithm named 
DevRR that defines new dynamic time quantum calculated 
by the standard deviation (SD) and the average burst time 
(ABT) in each execution round. Distribution of a data set of 
the burst time for all processes in the ready queue is 
discussed in order to define the optimized time quantum in 
each round. This experiment uses an object engine tester 
coded in Java to random value of an arrival time and a burst 
time of processes. Data sets for this experiment are 10, 50, 
100, 500, 1000, 5000, and 10000 processes. DevRR, PRR, 
and BRR algorithms are compared to the standard RR. The 
experimental result of all data sets indicates that the best 
performance algorithm is DevRR. Moreover, 50-process 
data set can gain the best result that can reduce 22.97% of 
AWT, 22.13% of ATT, and 30.26% of NCS with 50ms and 

11ms of TQ. Therefore, DevRR algorithm can strongly 
apply to support an operating system software development 
on mobiles, other devices, and network operating system 
(NOS) to enhance performance of CPU utilization at the 
present and the future. 
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