
26 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 94 NR 4/2018

Sarayut PHORNCHAROEN, Worawat SA-NGIAMVIBOOL

Department of Electrical Engineering, Faculty of Engineering, Mahasarakham University, Thailand

doi:10.15199/48.2018.04.07

A proposed round robin scheduling algorithm for enhancing
performance of CPU utilization

Abstract. An important problem of an operating system is CPU scheduling. This paper proposes round robin (RR) scheduling algorithm, named
DevRR, with new dynamic time quantum (TQ) computed by the standard deviation and average burst time of each process in a queue. Performance
of DevRR is compared to the standard RR, PRR, and BRR in term of decreasing of an average waiting time (AWT), an average turnaround time
(ATT), and number of context switches (NCS). Results can reduce 22.97% of AWT, 22.13% of ATT, and 30.26% of NCS for 50-process data set.

Streszczenie. W artykule zaproponowano algorytm procesora z dynamicznym czasem kwantowym określanym jako odchyłka standardowa i średni
czas impulsu każdego procesu w kolejkowaniu. Właściwości algorytmu porównano z innymi standardowymi metodami pod kątem oceny czasu
oczekiwania. Algorytm karuzelowy harmonogramu procesora poprawiający jego szybkość

Keywords: round robin algorithm, dynamic time quantum, average waiting time, average turnaround time
Słowa kluczowe: algorytm karuzelowy, procesor, harmonogram kolejkowania.

Introduction
Generally, a computer system consists of hardware,

software, user, and data set [1]. The main software is the
system software named as Operating System (OS) that can
directly manage system resources and environment. An
important problem of OS is CPU scheduling in order to use
more highly performance of CPU [1, 2] focused on average
waiting time (AWT), average turnaroud time (ATT), and
number of context switches (NCS) that means swap-in and
swap-out CPU of processes. A process is a job in the ready
queue to wait for utilizing CPU followed a sequence. CPU
scheduling algorithm comprises several methods: first come
first served (FCFS), short job first (SJF), priority queue
(PQ), shortest remaining time (SRT), and round robin (RR).

FCFS algorithm is a easiest method. Limitation of this
method is that if the current process takes a long time to
occupy CPU, other processes in the ready queue also have
to wait for a long time until ending complete execution of the
current process. SJF algorithm discusses that if any
process has a shorter burst time, a such process is firstly
executed. Disadvantage of this method is processes in the
ready queue is never executed if the new comming process
has a shorter burst time. PQ algorithm focuses on the
priority of process based on a job property. Limitation of this
method is that if the new comming process gets a higher
priority, all processes in the ready queue is never executed.
A such queue is a preemptive queue. SRT algorithm is
similar to SJF. When the current process must connect I/O
devices, this process is cancelled CPU occupancy. Then
the next process that has shortest remaining burst time is
selected to occupy CPU. The standard RR algorithm
defines a static time quantum (TQ) to execute processes for
each round. Therefore, the main point of RR method is an
appropriate time quantum. If a time quantum is set to more
long time, it affects more increasing value of AWT and ATT
that means unsuitability. In contrast, if a time quantum is set
to less short time, it affects more increasing value of NCS
that also means unsuitability.

However, RR algorithm is very popular [2] because it
can strongly provide fairness for each process in the ready
queue and ensure that all processes will be executed within
a time quantum [2, 3]. Therefore, this paper proposes CPU
scheduling algorithm based on the standard RR algorithm
concept. Whereas the standard RR algorithm is operated
with a static time quantum that is the average burst time
(ABT), a proposed RR algorithm is operated with a dynamic
time quantum. Performance analysis of CPU utilization
considers the minimum value of AWT, ATT, and NCS [1, 3].

Related researches
Ahad [4] has adjusted the standard RR with B and K

value. B value was computed from B = integer of (BT/TQ),
where BT was a burst time, TQ was a time quantum. When
B = 1, a process is executed by FCFS algorithm, but when
B > 1, a process is executed by the standard RR algorithm.
Moreover, K value was computed from K = ceiling of
(average of (BT%TQ)), and TQ = TQ+K for a new time
quantum in the next round. Mostafa [5] defined a new time
quantum between the minimum and maximum value of BT
in each round. Behera [6] proposed a new time quantum
with rearranging all processes in the ready queue and
assigned the median of the burst time to a new time
quantum for the next round (it is called BRR algorithm).
Mohanty [7] presented the burst time of the centered
process in the ready queue to a new time quantum without
rearranging processes in the ready queue. Matarneh [8]
proposed a new time quantum with the burst time of the
running process for the next round. Singh [9] defined a new
time quantum with a double of the lowest burst time of
processes in the ready queue. Pradhan [10] proposed a
dynamic time quantum with the average of the remaining
burst time for each round (it is called PRR algorithm).

A proposed scheduling algorithm concept

A proposed round robin scheduling algorithm, named
DevRR, presents a new idea about calculating value of a
time quantum (TQ). DevRR defines a new dynamic time
quantum from the average burst time and the standard
deviation (SD) of all burst time values in the ready queue
[11, 12]. We emphasize the SD value for a data set of all
burst times in each execution round. If SD is the greater
value, it shows that all burst time values are distributed from
the mean. On the other hand, if SD is the smaller value, it
shows that all burst time values are approached to the
mean. Therefore, DevRR algorithm will already calculate an
appropriately dynamic time quantum for this data set of the
burst time. Relation of the mean, the SD value, and the
burst time of all processes in the ready queue [2, 12, 13]
presents at the equation (1).

(1))min(BTTQ  

where: TQ is a time quantum, µ is ABT, σ is SD, BT is the
burst time, min(BT) is the minimal burst time for each round.
For DevRR algorithm concept, the first step, it must verify
the size of the ready queue. If the ready queue is empty, it
finishes the execution. The second step, it searches for the

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 94 NR 4/2018 27

minimum burst time of processes in the ready queue. The
third step, it calculates ABT. The fourth step, it calculates
the variance for a data set of the burst time in this execution
round. The fifth step, it calculates the SD value of this data
set. In the last step, it calculates the optimized time
quantum with two conditions; 1) if SD is greater than a half
of ABT, TQ is set with the mean + SD + the minimum burst
time. In this case, it means that this data set of the burst
time is distributed from the mean, so TQ must be the larger
value showed at the equation (2); 2) if SD is smaller than a
half of ABT, TQ is set with the mean + SD + 1. In this case,
it means that this data set of the burst time is approximate
to the mean, so TQ must be the smaller value showed at
the equation (3). It repeats all steps until the ready queue is
empty. After that, it computes AWT, ATT, and NCS to
analyze CPU utilization performance.

(2))(min
1

)(

1

1

2

1
i

ni

n

i
i

n

i
i

BT
n

BT

n

BT
TQ



 




 

(3) 1
1

)(
1

2

1 







n

BT

n

BT
TQ

n

i
i

n

i
i 

Where: n is amount of processes in the ready queue (size
of queue), and i is a process ID.

Pseudo code for DevRR scheduling algorithm is shown
in this below.

// --- DevRR Algorithm --- //
1. TQ = 0, AWT = 0, ATT = 0, NCS = 0 //The initial values
2. SizeOfQueue = Queue.getSize()
3. if (SizeOfQueue = 0) go to 25.
4. Sum = 0
5. AverageBurstTime = 0 //The mean for each round
6. Min = SizeOfQueue
 //To search for the minimum burst time
7. for (i = 0; i < SizeOfQueue; i++) {
8. BT = Queue.getBurstTime[i]
9. if (BT < Min) then Min = BT
10. Sum += BT
11. }
12. AverageBurstTime = Sum/SizeOfQueue
13. Total = 0
 //The variance for a data set of the burst time in queue
14. for (i = 0; i < SizeOfQueue; i++) {
15. BT = Queue.getBurstTime[i]
16. BT = BT – AverageBurstTime
17. Total += (BT  BT)
18. }
 //To calculate the standard deviation (SD)
19. SD = Math.sqrt(Total/(SizeOfQueue – 1))
 //To calculate the new optimized time quantum
20. if (SD > (AverageBurstTime/2))
21. TQ = AverageBurstTime + SD + Min
22. else
23. TQ = AverageBurstTime + SD + 1
24. Go to 2.
25. Compute AWT, ATT, NCS
26. Stop

Experiments
According to the related researches, we consider three

algorithms including PRR, BRR, and DevRR compared with
the standard RR algorithm that focuses on the minimal

value of AWT, ATT, and NCS [1, 3]. For this experimental
simulation, a data set of an arrival time and a burst time for
each process are randomized by an object engine tester
coded by Java [13, 14] where an arrival time value of each
process is between 1 and 5 millisecond (ms), and a burst
time value of each process is between 1 and 60 ms [14].
Moreover, we also define the experiment with seven data
sets classified by amount of processes: 10, 50, 100, 500,
1000, 5000, and 10000 processes [12]. Workflow of an
object engine tester is shown in Fig. 1.

Start

To generate an arrival time and
a burst time for each process

To define classes and objects for
round robin algorithm concept

Standard RR
algorithm

BRR
algorithm

PRR
algorithm

DevRR
algorithm

To display results of
AWT, ATT, and NCS

Stop

To run and compare all RR algorithms

Fig. 1. Workflow of an object engine tester

Results

An example of 10-process data set that is generated by
an object engine tester is shown in Table 1.

Table 1. An example of 10-process data set
Process ID Arrival time (ms) Burst time (ms)

#00001 0 39
#00002 1 17
#00003 6 59
#00004 10 32
#00005 15 38
#00006 20 10
#00007 22 21
#00008 26 30
#00009 27 47
#00010 32 35

From Table 1, an arrival time of process ID #00001 is
always generated as 0 ms. Its ID is the first process in the
ready queue, therefore it has no an arrival time.
Experimental results of all data sets is shown in Table 2.
 From table 2, it shows a comparison of all data set
results for PRR, BRR, and DevRR algorithm compared with
the standard RR based on 100%. The better results are
shown values marking with the minus sign and the green
color. To discuss an overall AWT of all data sets, the best
performance is DevRR algorithm that can make the most
AWT reduction 22.97% for 50-process data set.

28 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 94 NR 4/2018

Table 2. Results of all data sets
Data
set

Algorithm TQ (ms)
AWT ATT NCS

(ms) % % (+/-) (ms) % % (+/-) (times) % %(+/-)

10

Standard
RR

33 177.80 100.00% 0.00% 210.60 100.00% 0.00% 14 100.00% 0.00%

PRR 33,11,9,6 176.20 99.10% -0.90% 209.00 99.24% -0.76% 17 121.43% +21.43%
BRR 33,6,14,6 174.70 98.26% -1.74% 207.50 98.53% -1.47% 17 121.43% +21.43%
DevRR 48,11 146.90 82.62% -17.38% 179.70 85.33% -14.67% 10 71.43% -29.57%

50

Standard
RR

31 798.96 100.00% 0.00% 829.20 100.00% 0.00% 76 100.00% 0.00%

PRR 31,13,9,6,1 809.28 101.29% +1.29% 839.52 101.24% +1.24% 91 119.74% +19.74%
BRR 33,10,7,9,1 789.38 98.80% -1.20% 819.62 98.84% -1.16% 89 117.11% +17.11%
DevRR 50,11 615.46 77.03% -22.97% 645.70 77.87% -22.13% 53 69.74% -30.26%

100

Standard
RR

34 1981.92 100.00% 0.00% 2015.62 100.00% 0.00% 151 100.00% 0.00%

PRR 34,14,7,4,1 2027.81 102.32% +2.32% 2061.51 102.28% +2.28% 187 123.84% +23.84%

BRR
36,15,4,3,1,
1

2018.55 101.85% +1.85% 2052.25 101.81% +1.81% 184 121.85% +21.85%

DevRR 52,7,1 1672.50 84.39% -15.61% 1706.20 84.65% -15.35% 121 80.13% -19.87%

500

Standard
RR

30 8445.78 100.00% 0.00% 8475.00 100.00% 0.00% 746 100.00% 0.00%

PRR
30,14,8,5,2,
1

8635.01 102.24% +2.24% 8664.23 102.23% +2.23% 913 122.39% +22.39%

BRR
30,13,7,5,3,
1,1

8652.10 102.44% +2.44% 8681.32 102.43% +2.43% 955 128.02% +28.02%

DevRR 47,11,2 7329.95 86.79% -13.21% 7359.17 86.83% -13.17% 586 78.55% -21.45%

1000

Standard
RR

32 19224.13 100.00% 0.00% 19255.75 100.00% 0.00% 1510 100.00% 0.00%

PRR 32,15,7,4,2 19688.73 102.42% +2.42% 19720.36 102.41% +2.41% 1856 122.91% +22.91%

BRR
33,13,7,3,3,
1

19603.56 101.97% +1.97% 19635.17 101.97% +1.97% 1914 126.75% +26.75%

DevRR 50,10 17028.87 88.58% -11.42% 17060.49 88.60% -11.40% 1163 77.02% -22.98%

5000

Standard
RR

31 88025.08 100.00% 0.00% 88055.60 100.00% 0.00% 7454 100.00% 0.00%

PRR 31,15,8,4,2 90352.09 102.64% +2.64% 90382.70 102.64% +2.64% 9245 124.03% +24.03%

BRR
31,15,7,4,2,
1

90374.74 102.67% +2.67% 90405.31 102.67% +2.67% 9488 127.29% +27.29%

DevRR 49,11 79275.41 90.06% -9.94% 79306.03 90.06% -9.94% 5874 78.80% -21.20%

10000

Standard
RR

31 175586.83 100.00% 0.00% 175617.73 100.00% 0.00% 14867 100.00% 0.00%

PRR 31,15,8,4,2 179907.30 102.46% +2.46% 179937.75 102.46% +2.46% 18359 123.49% +23.49%
BRR 31,14,8,4,2,1 180063.23 102.55% +2.55% 180094.06 102.55% +2.55% 18995 127.77% +27.77%
DevRR 49,10,1 158772.77 90.42% -9.58% 158803.44 90.43% -9.57% 11912 80.12% -19.88%

Remark: the plus sign (+) is the increased percentage (not good), the minus sign (-) is the decreased percentage (good)

 In addition, to discuss an overall ATT of all data sets,
the best performance is DevRR algorithm that can make the
most ATT reduction 22.13% for 50-process data set. For an
overall NCS of all data sets, the best performance is also
DevRR algorithm that can make the most NCS reduction
30.26% for 50-process data set.

Fig. 2. Average waiting time for all data sets

 In Fig. 2, it shows a comparison of AWT values for PRR,
BRR, and DevRR algorithm compared to the standard RR.
The best performance algorithm is DevRR that can
compute AWT as 77.03% (22.97% reduction) for 50-process
data set, 82.62% (17.38% reduction) for 10-process data
set, and 84.39% (15.61% reduction) for 100-process data
set respectively. Moreover, other data sets indicate that the
approximate AWT value is 88.96% (11.04% reduction).

Fig. 3. Average turnaround time for all data sets

 In Fig. 3, it shows a comparison of ATT values for PRR,
BRR, and DevRR algorithm compared to the standard RR.
The best performance algorithm is DevRR that can
compute ATT as 77.87% (22.13% reduction) for 50-process
data set, 84.65% (15.35% reduction) for 100-process data
set, and 85.33% (14.67% reduction) for 10-process data set
respectively. Moreover, other data sets indicate that the
approximate ATT value is 88.98% (11.02% reduction).
 In Fig. 4, it shows a comparison of NCS values for PRR,
BRR, and DevRR algorithm compared to the standard RR.
The best performance algorithm is DevRR that can
compute NCS as 69.74% (30.26% reduction) for 50-process
data set, 71.43% (29.57% reduction) for 10-process data
set, and 77.02% (22.98% reduction) for 1000-process data
set respectively. Moreover, other data sets indicate that the
approximate NCS value is 79.40% (20.60% reduction).

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 94 NR 4/2018 29

Fig. 4. Number of context switches for all data sets

 According to experimental results for all data sets in
table 2, it indicates that 50-process data set gets the best
result where TQ are 50ms and 11ms for the first and the
second round respectively. Therefore, table 3 shows the
top-three algorithms for 50-process data set that enhance
the performance of CPU utilization.

Table 3. Top-three algorithms for 50-process data set

Items
Top-three round robin algorithms

No.1 No.2 No.3
AWT DevRR BRR Standard RR
ATT DevRR BRR Standard RR
NCS DevRR Standard RR BRR

 In addition, DevRR algorithm may have the restriction in
some cases. For example, if a burst time value for each
process nearly approaches to an average burst time (ABT),
DevRR algorithm is probably not an appropriate method for
these data sets. However, this situation is rarely occurred.

Conclusions

We propose round robin scheduling algorithm named
DevRR that defines new dynamic time quantum calculated
by the standard deviation (SD) and the average burst time
(ABT) in each execution round. Distribution of a data set of
the burst time for all processes in the ready queue is
discussed in order to define the optimized time quantum in
each round. This experiment uses an object engine tester
coded in Java to random value of an arrival time and a burst
time of processes. Data sets for this experiment are 10, 50,
100, 500, 1000, 5000, and 10000 processes. DevRR, PRR,
and BRR algorithms are compared to the standard RR. The
experimental result of all data sets indicates that the best
performance algorithm is DevRR. Moreover, 50-process
data set can gain the best result that can reduce 22.97% of
AWT, 22.13% of ATT, and 30.26% of NCS with 50ms and

11ms of TQ. Therefore, DevRR algorithm can strongly
apply to support an operating system software development
on mobiles, other devices, and network operating system
(NOS) to enhance performance of CPU utilization at the
present and the future.

Authors: Mr.Sarayut Phorncharoen, Mahasarakham University,
spsarayut@gmail.com; Assoc.Prof.Dr.Worawat Sa-Ngiamvibool,
Mahasarakham University, Thailand. wor_nui@yahoo.com

REFERENCES
[1] Chauhan N., Principles of Operating System, Oxford University

Press. Oxford, chapter 6, 2014.
[2] Anju M., Antony N., Nandakumarm, R., Dynamic Time Slice

Round Robin Scheduling Algorithm with Unknown Burst Time,
Indian Journal of Science and Technology, 9(8) (2016), 1-6.

[3] Jeffay K., Smith F.D., Moorthy A., Anderson J., Proportional
Share Scheduling of Operating System Services for Real-Time
Applications, in Proceeding of the 19th IEEE Real-Time
Systems Symposium, (1998), 25-32.

[4] Ahad M.A., Modifying Round Robin Algorithm for Process
Scheduling using Dynamic Quantum Precision, J. of Computer
Applications on Issues and Challenges in Networking,
Intelligence and Computing Technologies, 3(3) (2012), 5-10.

[5] Mostafa S.M., Rida S.Z., Hamad S.H., Finding time quantum of
round robin CPU scheduling algorithm in general computing
systems using integer programming, Int. J. of Research and
Reviews in Applied Sciences, 5(1) (2010), 64-71.

[6] Behera H., Mohanty R., Nayak D., A New Proposed Dynamic
Quantum with Re-adjusted Round Robin Scheduling Algorithm
and Its Performance Analysis, Int. J. of Computer Applications,
5(5) (2010), 10-15.

[7] Mohanty R., Design and Performance Evaluation of a New
Proposed Shortest Remaining Burst in (SRBRR) Scheduling
Algorithm, Int. J. of Computer Applications, 5(4) (2010), 10-15.

[8] Matarneh R.J., Self-Adjustment Time Quantum in Round Robin
Algorithm Depending on Burst Time of the Now Running
Process, American J. of Applied Sciences, 6(10) (2009), 31-37.

[9] Singh A., Goyal P., Batra S., An Optimized Round Robin
Scheduling Algorithm for CPU Scheduling, Int. J. on Computer
Science and Engineering, 2(7) (2010), 82-85.

[10] Pradhan P., Behera, P.K., Ray B.N.B., Modified Round Robin
Algorithm for Resource Allocation, Procedia Computer Science,
85(3) (2016), 878-890.

[11] Abdulrahim A., Aliyu S., Mustapha A.M., Abdullahi, S.E., An
Additional Improvement in Round Robin (AAIRR) CPU
Scheduling Algorithm, Int. J. of Advanced Research in
Computer Science and Software Engineering, 4(2) (2014), 1-8.

[12] Jakub S., Maria S., Edyta Ł., Algorithm for selecting optimal
clustering parameters used for over-segmentation reduction,
Przegląd Elektrotechniczny, 92 (2016), nr 9, 250-256.

[13] Wanchai K . , Ch i raphon T . , Hybrid of Lamda and Bee
Colony Optimization for Solving Economic Dispatch, Przegląd
Elektrotechniczny, 92 (2016), nr 9, 220-223.

[14] Gupta C., Maggo S., An efficient prediction model for software
reusability for Java-based object-oriented systems, Int. J. of
Computer Aided Engineering and Technology, 6(2) (2014),
182-199.

