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Abstract. The paper describes a nonlinear controller design technique for a servo drive in the presence of nonlinear friction together with a flexible 
shaft connecting the motor and the load. The shaft is characterized by the nonlinear stiffness curve. Two different type of the nonlinear stiffness 
curve are considered. The proposed controller is based on adaptive backstepping, modified by the use of command filtering. The proposed 
approach allows to accomplish the rigorous proof of the closed-loop system stability. Several experiments prove the control effectiveness. 
 
Sterszczenie. Opisano problem sterowania prędkością układu napędowego z nieliniowym tarciem, połączeniem sprężystym i nieznanymi 
parametrami. Elastyczne połączenie jest opisane przy pomocy nieliniowej funkcji sztywności. Rozważane są dwa typy nieliniowej funkcji sztywności: 
wypukła i wklęsła. Układy regulacji są projektowane przy pomocy metod „adaptive backstepping” z filtracją wartości zadanych. Opisano szereg 
eksperymentów, które ilustrują charakterystyczne właściwości układu regulacji. (Adaptacyjne sterowanie dwu-masowego układu napędowego z 
nieliniową charakterystyką sztywności) 
 
Keywords: nonlinear control, adaptive control, two-mass drive system, nonlinear stiffness. 
Słowa kluczowe: sterowanie nieliniowe, sterowanie adaptacyjne, układy dwumasowe z połączeniem sprężystym, nieliniowa 
charakterystyka sztywności. 
 
 
Introduction 

Electric drive systems with elastic coupling between a 
motor and a load are common in various industrial 
applications: robotics, servo systems, paper- and textile 
machines, molding machines, and many others. It is well 
recognized that even the small coupling elasticity leads to 
mechanical resonances, and may cause failures and 
damages, that takes much time and cost to replace. The 
unnecessary shaft oscillations also destroy the control 
system dynamical performance and accuracy. Therefore 
the attenuation of torsional oscillations is the main problem 
for drives with an elastic coupling. Several control methods 
are used to design controllers for such drives: modifications 
of linear control techniques (PI, LQ, root locus, etc. – [1]), 
artificial neural networks [2], linear model predictive control 
[3-4], fuzzy controllers [5], nonlinear neural networks [6] and 
finally adaptive backstepping [7-9]. 

Despite different approaches, all these methods are 
based on the drive model which assumes that the torque 
transmitted by the shaft is proportional to the angle of 
torsion and the constant of proportionality, called “stiffness” 
is determined by the shaft material. The curve representing 
the torsion angle – transmitted torque characteristics, that 
will be called “a stiffness curve” is a straight line. This 
assumption is not correct in numerous drives if the shaft is 
constructed with the use of peculiar couplings. For example, 
if pneumatic couplings are used the stiffness curve is 
convex downward, strictly increasing [10-12]. In many 
drives, a flexible coupling with an elastic polymeric part is 
applied to compensate the axial eccentricity of the 
machines. In this case, the stiffness curve is concave 
downwards, strictly increasing as it is plotted in fig. 1 [13]. 
Actuators with nonlinear stiffness curve are common in 
numerous robotic applications [14-15]. 

Therefore, in this contribution, a nonlinear adaptive 
controller is proposed to cope with systems with nonlinear 
stiffness. Additionally, a static, nonlinear model of friction 
torques, which affect each end of the shaft are assumed. 
The designed controller is able to eliminate the shaft 
oscillations and to compensate the friction in presence of 
unknown system parameters. 
 
Plant model and control objectives 

The considered drive is modelled by four differential 
equations: 

(1) 

߮̇ ൌ ߱,
߱̇ܬ ൌ ݇ܵሺ߮ െ ߮ሻ െ ܶሺ߱ሻ,

߮̇ ൌ ߱,
߱̇ܬ ൌ െ݇ܵሺ߮ െ ߮ሻ െ ܶሺ߱ሻ  ܶ,

 

where ܬ corresponds to the inertia of the motor and ܬ to 
the inertia of the load. The angular position of the motor is 
denoted by ߮ and the angular displacement of the load by 
߮. The drive torque coming from the motor ܶ is the 
control input. The component ݇ܵሺ߮ െ ߮ሻ represents the 
torque transmitted by the shaft. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Different shapes of stiffness curves: solid line – linear, dotted 
– convex downward, dash-dotted – concave downward 
 

The function ܵ is assumed to be known and 
differentiable, while the constant coefficient ݇ is unknown. 
The friction torques ܶ 	and ܶ are associated with ܬ and ܬ, 
respectively: ܶ represents the load torque and the 
nonlinear frictional torques affecting the load-end of the 
drive  and ܶ stands for all frictional torques of the motor. It 
is convenient to separate the damping viscous friction 
component in ܶሺ߱ሻ and ܶሺ߱ሻ:  
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(2) 
ܶሺ߱ሻ ൌ ܿ߱  ܶሺ߱ሻ,

ܶሺ߱ሻ ൌ ܿ߱  ܶሺ߱ሻ,
 

where ܿ and ܿ are the unknown, damping viscous 
coefficients associated with the motor and the load 
respectively. Functions ܶሺ߱ሻ and ܶሺ߱ሻ represent 
nonlinear components of friction torques associated with the 
Stribeck effect.  
If the load velocity control is considered, the reduced model 
may be derived from the equations (1):  

(3)   ߮ ≝ ߮ െ ߮, 

߱̇ܬ (4) ൌ ݇ܵሺ߮ሻ െ ܶሺ߱ሻ, 

(5) ሶ߮ ൌ ߱ െ ߱, 

߱̇ܬ (6) ൌ െ݇ܵሺ߮ሻ െ ܶሺ߱ሻ  ܶ. 

The equation (5) may be replaced by  

(7) 
ௗ

ௗ௧
ܵሺ߮ሻ ൌ ܵ′ሺ߮ሻሺ߱ െ ߱ሻ. 

The model covers also the linear case when ܵሺ߮ሻ ൌ ߮,
ܶሺ߱ሻ ൌ ܿ߱,			݅ ൌ ,ݎ ܾ. 

The control aim is to follow the smooth, desired load 
speed trajectory ߱ௗ. 

 
Controller design 

The adaptive controller is designed using the approach 
similar to adaptive backstepping [16]. The derivatives of the 
virtual controls will be obtained from linear filters, if 
necessary.  
 
Step 1: 

Consider the tracking error 

(8) ݁ ≝ ߱ െ ߱ௗ, 

which is governed by the differential equation 

(9) 
್

ሶ݁ ൌ െ

್


ሶ߱ ௗ െ
்್ሺఠ್ሻ


 ܵሺ߮ሻ. 

Because of the unknown parameters and nonlinearities in 

(9) it is assumed that the function െ
್


ሶ߱ ௗ െ
்್ሺఠ್ሻ


 may be 

approximated by the linear-in-parameters model ߠ
 ,ߦ்

where ߦ are known functions and ߠ  are unknown 
parameters. There are several possibilities to choose the 
approximation. For example the functions ߦ may be 
selected as: 

ߦ (10)
் ൌ ቂെ

್̅

ത
ሶ߱ ௗ െ

್̅

ത
߱ െ

ଵ

ത
ߞ
்ሺ߱ሻቃ, 

where: 
 ∗ത denotes the initial, approximate guess of the 

parameter * , 
 components of	 ߞ

்ሺ߱ሻ	 constitute the basis 
(regressor) used to approximate	 ܶሺ߱ሻ	 from 
numerical data obtained from a steady-state 
friction characteristics.  

Unavoidably, the approximation error ߝ occurs, such that 

ߠ (11)
ߦ் ൌ െ

್


ሶ߱ ௗ െ
்್ሺఠ್ሻ


െ |ߝ|				,ߝ   .௫ߝ

The signal ܵሺ߮ሻ is so-called “virtual control” and is used to 
stabilize the equation (9). The desired value for the virtual 
control, so-called “stabilizing function” is denoted by ߙ, and 
the tracking error is: 

(12) ݁ఝ ≝ ܵሺ߮ሻ െ  .ߙ

Using all these notations in (9) results in  

(13) 
್

ሶ݁ ൌ ߠ

ߦ்  ߙ  ݁ఝ   .ߝ

The unknown parameters ߠ  will be substituted by adaptive 
parameters ߠ  and the error of adaptation is denoted by	

෨ߠ (14) ≝ ߠ െ ߠ . 

The choice  

ߙ (15) ൌ െߠ
ߦ் െ  ,݁ܭ

where ܭ  0 is the design parameter, results in  

(16) 
್

ሶ݁ ൌ ෨ߠ

ߦ் െ ݁ܭ  ݁ఝ   .ߝ

 
Step 2: 

The time-derivative of ߙ is necessary to describe the 
dynamics of the error ݁ఝ. Unfortunately, it requires 
differentiation of ߦ and may produce complex mathematical 
expressions. Therefore this derivative is obtained from a 
first order filter: 

ሶఝݖ (17) ൌ െܽఝ൫ݖఝ െ ,൯ߙ ఝሺ0ሻݖ ൌ  .ሺ0ሻߙ

The signal ݖఝ is the filter state variable and ܽఝ  0 is the 
filter design parameter, which decides how fast the steady 
state ݖఝ ൌ   is achieved. It may be demonstrated that theߙ
filtering error remains bounded: 

ఝߩ (18) ≝ ఝݖ െ ,ߙ หߩఝห ൏  .ఝ௫ߩ

Defining the filtered tracking error 

(19) ݁ఝ ≝ 	ܵሺ߮ሻ െ  ఝݖ

allows to re-write (16) as 

(20) 
್

ሶ݁ ൌ ෨ߠ

ߦ் െ ݁ܭ  ݁ఝ  ఝߩ   .ߝ

The transient of ݁ఝ is described by  

(21) 
ௗ

ௗ௧
݁ఝ ൌ ܵᇱሺ߮ሻሺ߱ െ ߱ሻ  ܽఝ൫ݖఝ െ  ൯ߙ

The signal ߱ is selected to be „virtual control” in (20), ߙఝ 
denotes the desired value for ߱ and  

(22) ݁ ≝ ߱ െ  .ఝߙ

Hence: 

(23) 
ௗ

ௗ௧
݁ఝ ൌ ܵᇱሺ߮ሻ൫݁  ఝߙ െ ߱൯  ܽఝ൫ݖఝ െ  .൯ߙ

Therefore, applying 

ఝߙ(24) ൌ ߱ െ
ଵ

ௌᇲሺఝሻ
ൣܽఝ൫ݖఝ െ ൯ߙ  ఝ݁ఝܭ  ݁൧ െ

ଵ

ଶ
ܵᇱሺ߮ሻ݁ఝ 

(where ܭఝ  0 is the design parameter) provides: 

(25) 
ௗ

ௗ௧
݁ఝ ൌ ܵ′ሺ߮ሻ݁ െ ఝ݁ఝܭ െ ݁ െ

ଵ

ଶ
ሾܵᇱሺ߮ሻሿଶ݁ఝ. 

 
Step 3: 

The same approach with the application of the filter, is 
repeated to obtain the next filtering error and it’s derivative. 
It is summarized by the following chain of expressions: 

ሶݖ (26) ൌ െܽ൫ݖ െ ,ఝ൯ߙ ሺ0ሻݖ ൌ  ,ఝሺ0ሻߙ

ߩ (27) ≝ ݖ െ ,ఝߙ |ߩ| ൏  ,௫ߩ

(28) ݁ ≝ ߱ െ ఝߙ ൌ ߱ െ ݖ  ݖ െ ఝߙ ൌ ݁   ,ߩ

(29) ݁ ≝ 	߱ െ  .ݖ
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Using these notations allows to re-write (25) as 

(30) 
ௗ

ௗ௧
݁ఝ ൌ ܵᇱሺ߮ሻ݁  ܵᇱሺ߮ሻߩ െ ఝ݁ఝܭ െ ݁ െ

ଵ

ଶ
ሾܵᇱሺ߮ሻሿଶ݁ఝ. 

The dynamics of the filtered error ݁ is given by 

ܬ (31)
ௗ

ௗ௧
݁ ൌ െ݇ܵሺ߮ሻ െ ܶሺ߱ሻ  ݖܽ൫ܬ െ ఝ൯ߙ  ܶ. 

As in the first step, the function െ݇ܵሺ߮ሻ െ ܶሺ߱ሻ 
ݖܽ൫ܬ െ -ఝ൯ will be approximated by the linear-inߙ
parameters model ߠ்ߦ with a bounded approximation error 
 :ߝ

ߦ்ߠ (32) ൌ െ݇ܵሺ߮ሻ െ ܶሺ߱ሻ  ݖܽ൫ܬ െ ఝ൯ߙ െ
|ߝ|				,ߝ   .௫ߝ

Similarly as in (9,10), the model regressor may be selected 
as: 

்ߦ (33) ൌ ൣെത݇ܵሺ߮ሻ െܿ̅߱ െߞ்ሺ߱ሻ ݖ̅ܽ൫ܬ െ  ,ఝ൯൧ߙ

where, as previously, ∗ത denotes the initial, approximate 
guess of the parameter * and	ߞ்ሺ߱ሻ	is the basis (regressor) 
used to approximate	 ܶሺ߱ሻ.		
Instead of the unknown parameters ߠ  the adaptive 
parameters ߠ  are used and the adaptation error is 
denoted by: 

෨ߠ (34) ≝ ߠ െ ߠ . 

The proposed control input  

(35) ܶ ൌ െߠ்ߦ െ ݁ܭ െ ܵ′ሺ߮ሻ݁ఝ 

(where ܭ  0 is the design parameter) results in the filtered 
error dynamics 

ܬ (36)
ௗ

ௗ௧
݁ ൌ െܭ݁  ߦ෨்ߠ െ ܵᇱሺ߮ሻ݁ఝ   .ߝ

 
System stability 

The closed-loop system is described by the error 
equations (20), (30) and (36) and also includes the motion 
of the adaptive parameters, which must be designed to 
assure the whole system stability. The missing adaptive 
laws are derived by the analysis of the Lyapunov function 

(37) ܸ ൌ
ଵ

ଶ
ቀ
್

݁
ଶ  ݁ఝ

ଶ  ݁ܬ
ଶ  ෨ߠିଵ߁෨்ߠ  ෨ߠ

߁்
ିଵߠ෨ ቁ. 

The Lyapunov function derivative is calculated by the 
following chain of transformations: 
(38) ሶܸ ൌ ݁൫ߠ෨

ߦ் െ ݁ܭ  ݁ఝ  ఝߩ  ൯ߝ 

݁ఝ 	ቂܵ′ሺ߮ሻ݁  ܵ′ሺ߮ሻߩ െ ఝ݁ఝܭ െ ݁ െ
ଵ

ଶ
ሾܵᇱሺ߮ሻሿଶ݁ఝቃ 

݁൫െܭ݁  ߦ෨்ߠ െ ܵᇱሺ߮ሻ݁ఝ  ൯ߝ  ିଵ߁෨்ߠ
ௗ

ௗ௧
෨ߠ 

෨ߠ
߁்

ିଵ ௗ

ௗ௧
෨ߠ , 

(39) ሶܸ ൌ െܭ݁
ଶ െ ఝ݁ఝܭ

ଶ െ ݁ܭ
ଶ  ෨ߠ

் ቀ݁ߦ െ

߁
ିଵ ௗ

ௗ௧
ߠ ቁ  ෨்ߠ ቀ݁ߦ െ ିଵ߁

ௗ

ௗ௧
ߠ ቁ 		 ݁൫ߩఝ  ൯ߝ െ

ଵ

ଶ
ሾܵᇱሺ߮ሻሿଶ݁ఝ

ଶ  ݁ఝ	ܵᇱሺ߮ሻߩ  ݁ߝ, 

(40) ሶܸ ൌ െܭ݁
ଶ െ ఝ݁ఝܭ

ଶ െ ݁ܭ
ଶ  ෨ߠ

் ቀ݁ߦ െ

߁
ିଵ ௗ

ௗ௧
ߠ ቁ  ෨்ߠ ቀ݁ߦ െ ିଵ߁

ௗ

ௗ௧
ߠ ቁ 		 ݁൫ߩఝ  ൯ߝ െ

ଵ

ଶ
ሾܵᇱሺ߮ሻሿଶ݁ఝ

ଶ  ݁ఝ	ܵ′ሺ߮ሻߩ െ
ଵ

ଶ
ଶߩ 

ଵ

ଶ
ଶߩ  ݁ߝ, 

(41) ሶܸ ൌ െܭ݁
ଶ െ ఝ݁ఝܭ

ଶ െ ݁ܭ
ଶ  ෨ߠ

் ቀ݁ߦ െ

߁
ିଵ ௗ

ௗ௧
ߠ ቁ  ෨்ߠ ቀ݁ߦ െ ିଵ߁

ௗ

ௗ௧
ߠ ቁ 		 ݁൫ߩఝ  ൯ߝ െ

ଵ

ଶ
൫݁ఝ	ܵ′ሺ߮ሻ െ ൯ߩ

ଶ


ଵ

ଶ
ଶߩ  ݁ߝ. 

The adaptive laws are chosen as  

(42)  
ௗ

ௗ௧
ߠ ൌ ݁ߦ൫߁ െ ߠߪ ൯, 

(43)  
ௗ

ௗ௧
ߠ ൌ ݁ߦ൫߁ െ ߠߪ ൯, 

where ߪ,   . are positive constantsߪ
Plugging (42) and (43) into (41) provides 

(44) ሶܸ ൌ െܭ݁
ଶ െ ఝ݁ఝܭ

ଶ െ ݁ܭ
ଶ  ݁൫ߩఝ  ൯ߝ െ

ଵ

ଶ
൫݁ఝ	ܵ′ሺ߮ሻ െ ൯ߩ

ଶ
 ෨ߠߪ

ߠ்  ߠ෨்ߠߪ 
ଵ

ଶ
ଶߩ  ݁ߝ. 

Making use of the inequalities 

(45) ݁൫ߩఝ  ൯ߝ 
ଵ

ଶ
݁
ଶ 

ଵ

ଶ
൫ߩఝ  ൯ߝ

ଶ
, 

(46) ݁ߝ 
ଵ

ଶ
݁
ଶ 

ଵ

ଶ
ߝ
ଶ , 

෨ߠ (47)
ߠ் 

ଵ

ଶ
෨ߠ
෨ߠ் 	

ଵ

ଶ
ߠ
,	ߠ் ݅ ൌ ܾ,  ,ݎ

leads to 

(48) ሶܸ  െ ቀܭ െ
ଵ

ଶ
ቁ ݁

ଶ െ ఝ݁ఝܭ
ଶ െ ቀܭ െ

ଵ

ଶ
ቁ ݁

ଶ െ
ఙ್
ଶ
෨ߠ
෨ߠ் െ

ఙೝ
ଶ
෨ߠ෨்ߠ 

ఙ್
ଶ
ߠ
ߠ் 

ఙೝ
ଶ
ߠ்ߠ 

ଵ

ଶ
ଶߩ െ

ଵ

ଶ
൫ߩఝ  ൯ߝ

ଶ


ଵ

ଶ
ߝ
ଶ  െܭ‖݁‖ଶ െ

ఙ

ଶ
ฮߠ෨ฮ

ଶ
  ,ߝ

where ߝ ≝
ఙ್
ଶ
ߠ
ߠ் 

ఙೝ
ଶ
ߠ்ߠ 

ଵ

ଶ
ଶߩ 

ଵ

ଶ
ߝ
ଶ ܭ , ൌ

min ቀܭ െ
ଵ

ଶ
, ,ఝܭ ܭ െ

ଵ

ଶ
	ቁ , ߪ ≝ minሺߪ, ݁ ,ሻߪ ≝

ൣ݁, ݁ఝ, ݁൧
்
෨ߠ , ≝ ,෨ߠൣ ෨൧ߠ

்
. 

Finally, ሶܸ ൏ 0 for ‖݁‖  ට
ఌ


 and any ฮߠ෨ฮ. On the other 

hand, ሶܸ ൏ 0 for ฮߠ෨ฮ  ට
ଶఌ

ఙ
 and any‖݁‖. 

Concluding: under the proposed control the adaptive 
parameters error are uniformly ultimately bounded (UUB) 
[17] to the set: 

(49) ܲ ≝ ൜ߠ෨:	ฮߠ෨ฮ  ට
ଶఌ

ఙ
ൠ 

and the trajectories of the system (20), (30), (36) are 
uniformly ultimately bounded to the set: 

(50) ܳ ≝ ൜݁:	‖݁‖  ට
ఌ


ൠ 

and the bound for ‖݁‖ may be tighten by increasing ܭ. 
It follows directly from the filter equations that ݁ఝ is bounded 
if ݁ఝ is bounded and ݁ is bounded if ݁ is bounded. The 
design parameters ܽఝ, ܽ influence the transient speed and 
the level of the bound. Therefore the system of state 
variables ݁̅ ൌ ሾ݁ ݁ఝ ݁ሿ் is also UUB. 
 
 The derived controller is defined by the control law (35), 
adaptive laws (42,43) and the errors ݁, ݁ఝ, ݁	 are the 
controller inputs. The controller takes into account the 
nonlinearity of the stiffness curve: the function ܵሺ߮ሻ is used 
in the regressor ߦ (35), in the error definitions (12, 19), and 
the derivative ܵᇱሺ߮ሻ is applied to the control (35) and in the 
stabilizing function (24). The adaptive loop keeps tuning the 
parameters including this one which corresponds to the 
gain ݇ of ܵሺ߮ሻ. The system is able to work properly if the 
stiffness model ܵሺ߮ሻ is not accurate, even if the linear 
stiffness is assumed, as long as the modelling errors remain 
bounded as it is assumed in (32). But the model including 
the nonlinear characteristics ܵሺ߮ሻ is more accurate, so it 
minimizes the effort of the adaptive loop and improves the 
system performance.  
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Simulation experiments 
The characteristic features of the propose approach are 

investigated by simulation of an exemplary drive with 
parameters (in SI units) ܬଵ ൌ 0,4, ܾଵ ൌ 4 ∙ 10ିଷ,			݇ ൌ
82,5, ܿ ൌ 0,1, ܿ ൌ 0,01.  
The simulations are done for two different function ܵሺ߮ሻ: 

 the stiffness curve is a convex downward, strictly 
increasing 

(51) ܵሺ߮ሻ ൌ ߮  30߮ଷ 

 the stiffness curve is concave downwards, strictly 
increasing 

(52) ܵሺ߮ሻ ൌ ቀ
ଵ

ଷ


ଶ

ଷ
݁ିଽ.ଶସଶఝቁ߮ 

The nonlinear components of friction torques ܶሺ߱ሻ and 

ܶሺ߱ሻ are given by 

(53) ܶ ൌ ቆ ௦݂  ሺ ݂ െ ௦݂ሻ݁
ି൬

ഘ
ഘೞ

൰
మ

ቇ tanhሺ100߱ሻ , ݅ ൌ ,ݎ ܾ 

with the parameters ௦݂ ൌ 1, ௦݂ ൌ 1,			 ݂ ൌ 2, ݂ ൌ 2, ߱௦ ൌ
߱௦ ൌ 0,03. 
The regressor functions ߦ,   and vectors of unknownߦ
parameter ߠ,   are defined asߠ

(54)
ߦ 

் ൌ

ቂെ ሶ߱ ௗ െ߱ െ tanhሺ100߱ሻ െ݁
ି൬

ഘ್
ഘೞ್

൰
మ

tanhሺ100߱ሻ
	ቃ 

(55)
்ߦ  ൌ

ቂെܵሺ߮ሻ െ߱ െ tanhሺ100߱ሻ െ݁
ିቀ

ഘೝ
ഘೞೝ

ቁ
మ

tanhሺ100߱ሻ ܽ൫ݖ െ  ቃ	ఝ൯ߙ

ߠ (56)
் ൌ ቂ

್


್


ೞ್


ೝିೞೝ


	ቃ 

்ߠ (57) ൌ ሾ݇ ܿ ௦݂ ݂ െ ௦݂  .ሿ	ܬ

 
The desired output trajectory is given as: 

(58) ߱ௗ ൌ sinሺ3ݐሻ. 

The controller parameters are chosen as: ܭ ൌ 15, ܭ ൌ
15, ఝܭ ൌ 15, ߪ ൌ ߪ ൌ 0.001, ܽ ൌ ܽ ൌ 10ସ,	 Γ ൌ
ሾ25 250 25 25ሿ		, Γ ൌ ሾ0,25 25 ∙ 10ହ 250 25 25ሿ. 

The main aim of the conducted experiments was to 
compare two control algorithms: 
1. taking into account the nonlinear stiffness curve ܵሺ߮ሻ;  
2. taking into account only the linear part of curve ܵሺ߮ሻ, 

therefore assuming that 

(59) ܵሺ߮ሻ ≅ ߮, ܵ′ሺ߮ሻ ≅ 	1 

instead of (51) or (52). 
 

First, the non-adaptive case was investigated. It was 
assumed that all parameters of the plant are known exactly 
and the adaptation was switched off (Γ ൌ 0, Γ ൌ 0). As it is 
demonstrated in fig. 2 and fig. 6, the controller is able to 
stabilize the closed-loop system, although noticeable output 
oscillations are visible if the nonlinear part of the stiffness 
curve is not taken into account. 
 Next, the adaptive control was tested. The initial value of 
each component of vectors ߠ,   was approximated withߠ
50% error. Again, the adaptive controller was able to 
stabilize the closed-loop system with nonlinear stiffness, 
using linear model of the stiffness curve. All state variables 
behave properly and the adaptive parameters are bounded. 
But it is visible that the quasi-steady-state oscillations of the 

output are eliminated if the nonlinear model of the stiffness 
curve is used (fig. 3 and fig. 7). The adaptive loop effort is 
also much smaller in this case: significantly reduced 
amplitude of oscillations of adaptive parameters was 
observed (fig. 4,5, fig. 8,9). 

 
Fig.2. The tracking error ݁ for a convex stiffness curve with the 
non-adaptive controller: solid line – case 1; dash-dotted – case 2 

 
Fig.3. The tracking error ݁ for  a convex stiffness curve with the 
adaptive controller: solid line – case 1; dash-dotted – case 2 

 

 
Fig.4. The norm of error adaptive parameters ฮߠ෨ฮ for a convex 
stiffness curve: solid line – case 1; dash-dotted – case 2 
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Fig.5. The norm of error adaptive parameters ฮߠ෨ฮ for convex 
stiffness curve: solid line – case 1; dash-dotted – case 2  
 

 
 
Fig.6. The tracking error ݁ history for concave stiffness curve with 
non-adaptive controller: solid line – case 1; dash-dotted – case 2 
 

 
Fig.7. The tracking error ݁ history for a concave stiffness curve 
with the adaptive controller: solid line – case 1; dash-dotted – case 
2 

 
Fig.8. The norm of error adaptive parameters ฮߠ෨ฮ for a concave 
stiffness curve: solid line – case 1; dash-dotted – case 2 

 
Fig.9. The norm of error adaptive parameters ฮߠ෨ฮ for a convex 
stiffness curve: solid line – case 1; dash-dotted – case 2 

 
Conclusions 

First of all, the presented results demonstrate that the 
design of the adaptive controller for two-mass resonant 
systems with a nonlinear model of stiffness is possible. The 
design procedure is not complicated and the 
implementation demonstrates the same level of complexity 
as in a linear case. So, taking into account a nonlinear 
model of a stiffness curve is not “expensive” in any sense. 
As a “reward” a better control quality and a smaller effort of 
the adaptive loop are obtained. 

The presented technique provides effective control of 
two-mass resonant systems with nonlinear stiffness. The 
same design approach is able to suppress the shaft 
oscillations and to compensate for nonlinear friction or any 
other resistance torques. The control is based on the 
command filtering adaptive backstepping (CFAB) approach. 
The CFAB techniques allow to perform the rigorous proof of 
the closed loop system stability in UUB sense. The derived 
controllers are not difficult to tune. 
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