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Measurements and calculation of self inductance of testing coils 
used in physical transformer model construction and its frequency 

analysis 
  
 

Streszczenie. W artykule dokonano przeglądu i porównania różnych metod i sposobów wyznaczania, najdokładniej jak to możliwe, indukcyjności 
własnej wielowarstwowej cewki spiralnej. Cewka poddana analizie stanowiła element wyposażenia pomiarowego w modelu fizycznym 
transformatora badanego pod względem charakterystyk częstotliwościowych. Uzyskane indukcyjności zostały porównane z wartością uzyskaną 
metodą pomiarową. 
    
Abstract. The paper reviews and compares various methods of accurately determining the value of self-inductance of multilayer spiral coil, being the 
part of measuring equipment in physical model of the transformer tested for frequency characteristics. These values were compared to the 
inductance measured in the laboratory and the accuracy of calculation methods has been evaluated. (Pomiar i obliczanie indukcyjności własnej 
cewki testowej użytej do budowy fizycznego modelu transformatora oraz jego analizy częstotliwościowej) 
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Introduction 
The aim of the paper is to present calculations and 

measurements of self-inductance of the flat spiral coils with 
thin internal insulation used to build a physical transformer 
model and its frequency analysis. The exact knowledge of 
self-inductance was necessary for further use of the real 
model and its equivalent circuit diagram as well. The 
authors decided to use numerous formulas available in 
literature.. The measure of this accuracy is the comparison 
of the results  with the value obtained in the direct 
measurement. 

 

Test coil 
To build the transformer physical model [6], 5 coils were 

made of 20 mm wide copper tape with a thickness of 0,5 
mm. Each coil (Fig. 1) had 30 turns separated by a thin 
insulation tape, what gave a square with 0,02 x 0,02 m side 
in the cross section. Other parameters were as follows:  
internal diameter Dw = 0,295 m; external Dz = 0,335 m and 
the mean diameter D = 0,315 m.  

    

 
Fig. 1. The test coil on the measuring stand, sketch of its spiral and 
the cross-section with geometric size markings 
 

The coils were wound manually on a specially built 
machine. It helped to keep the circular shape of the coil, its 
dimensions (internal diameter) and ensured proper tension 
of the copper tape during winding. 

 

Review of methods and formulas for determining the 
inductance of current contours 

Inductance is a property of an electrical conductor which 
opposes a change in current. It does that by storing and 

releasing energy from a magnetic field surrounding the 
conductor when current flows, according to Faraday's law of 
induction. It is  connected with the magnetic flux Φ and the 
current I by the formula: Φ = LI, which is most often used to 
calculate inductance as L= Φ/I. Therefore, the calculation 
of inductivity becomes mainly the task of determining the 
magnetic flux (Fig. 1) with the induction vector B, excited  
through the conductor 1, leading current I, therefore the 
fundamental formula might be used, [4]: 

(1) 
S

Φ sBd  

where: S is any surface spread over another, but closed 
contour 2 (not necessarily leading the current), with a 
positive orientation of its circulation, ds - elementary surface 
vector normal to the surface S. 
  

 

Fig. 2. Magnetic flux Φ associated with a current-free contour 2 and 
conductor 1 with current I. 
 

The gain dB of induction at any point P of the space, 
coming from the section dl, under the law of Biot-Savart [4], 
is given by the formula: 
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and integration over the entire length l of conductor 1 with 
current I gives induction B at the point P. Usually, however, 
we do not deal with a single current filament, but with their 
bunch filling the cross-section  of the conductor, and the 
current filament itself is considered to be closed, single turn 
of the coil (Fig. 3). 
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Fig. 3. Magnetic flux ΦdI associated with the elementary current 
loop dI 

Then the linkage flux Ψ [4] defined as the surface 
integral is widely use: 

(3) 
1 1

d dΨ Φ I Φ
I Σ

    

If we assume that the current has constant distribution 
density in the conductor cross section (dI = Idσ/Σ) and 
there is no external magnetic field originating from another 
contour. However, if it exists, there is a need to distinguish 
between the own contour and neighbour contours, which 
leads to the concept of self-induction (→ self-inductance L) 
and mutual induction (→ mutual inductance M). Unluckily, 
the direct use of formula (1) may prove to be a difficult task 
and therefore the notion of vector potential A is used, which 
binds with the induction, as B = rotA. According to Stokes 
theorem, it is possible to replace the surface integral with 
the circular integral along the closed contour limiting this 
surface. In figure 3, it is, for example, the internal surface of 
the torus limited by a ring with a cross-section Σ. 

In a general case, two separate loops 1 and 2 of the 
lengths l1 and l2 are being considered, respectively. 

 

Fig. 4. Illustration for determining the mutual inductance of two 
current loops. 
 

If in the first loop current I1 flows, then we can specify 
the flux called Φ21 associated with the second contour. The 
quotient of this flux by the excitation current I1 determines 
[4] the mutual inductance M21 = Φ21/l1. So we have: 

(4)  
22

2221 ddrot
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where: dl2 - unitary vector along the contour 2; ds2 - unitary 
vector, normal to the surface S2 limited by contour l2, 
positively oriented relative to the direction of its circulation, 
i.e. in the direction of current flow I2. 

In turn, the vector potential A coming from the current 
I1, at any point in the space [4] is defined by the formula: 
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which can replace (4) by another one: 
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where: I1 - current in loop 1; dlk, dlm – unitary lenghts 
vectors of two current loops; θ - angle between the 
directions of contour lengths. 

The mutual inductance then equals to: 
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The interaction between current loops is symmetrical, so 
M12 = M21, that is why the double indexing is usually 
omitted, leaving one symbol M. There is a special case to 
be considered when only one conductor of non-negligible 
cross-sectional area carries the current I, for which the 
concept of self-inductance L (Fig. 5) needs to be explained. 

  
Fig. 5. Geometrical illustration for determining the inductance of the 
single current conductor. 

The formula (6) will be referred to the k - th current 
filament of length lk and will take form that respect the total 
share of all other current filaments lm of the same 
conductor. To avoid singularities, the influence of an 
elementary segment  dΔlk with current ΔIk on itself is 
omitted in integration, because then r = 0. For this reason, 
there is no formal integration, but sufficiently numerous 
summation of shares with exclusion of this one component. 
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where: ΔIk = I/lk, ΔIm = I/lm  – the entire current I of 
conductor referenced to the contour lenghts (linear density). 
In order to determine the linkage flux Ψ with the entire 
current (and hence the self-inductance L), one should apply 
formula (3) and integrate over the entire surface S of the 
conductor with current I. In practice, the integral (3) is again 
replaced by the sum of shares, as a result of which we get: 
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and finally the self-inductance 
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or alternatively 
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related to the elementary cross sectional area of fictitious 
current tube, assigning it a value resulting from the 
sequence of proportions: ΔIk/I = ΔIm/I = Δσk/Σ = Δσm/Σ. 

The general formulas quoted here, applied to the most 
common coreless coils, but varied in terms of their shape 
and winding arrangement, resulted in many specific cases. 
The paper recalls a few of them that could be considered as 
approximate modeling of the analyzed test coil. 

 
Inductance of rectangular cross-section ring 

It is assumed that the ring is built of one solid turn of 
winding (Fig. 1) with uniform current density. According to 
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[3], we can use the formula (in H): 
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where: a, b – width and height of the ring; D/2 – radius of 
the axial line of the conductor. 

By applying the above mentioned data, we obtain (in H): 
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The result concerns a solid coil so fitting to the test coil 
requires a multiplication of this value by the square of 
number of turns w2. We then get L = 0,584302  = 525,5 H. 
 

Inductance of circular cross-section ring 
The replacement of a rectangular section with a circular 

one of radius r = a/2 = b/2 is intended only to show how 
significant is this change in affecting the previous result. 
According to [4], in case of R >> r (here: 0,315 >> 0,2), we 
can use the formula 
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where: w – number of turns, d - average diameter (d = D). 

and like above we get: 
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what after multiplication by w2 gives L = 0,562302  = 505,8 
  
Inductance of square cross-section coil 

In this case, the windings forms a square of side a, 
whose dimensions were used for previous calculations. The 
formula taken from [4] looks as below: 
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where: w – number of turns; d – mean diameter (d=D).  
Φ is a function of the parameter  = a/D: 
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and for a = 0,0635 returns Φ = 37,085, so the inductance 
equals to (in H): 
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Inductance of circular section coil 
In such a case the inductance L is given by the formula: 
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where: r – radius of the circular section of the coil, d = D – 
radius of axial line of wire (mean diameter);  = r/D 
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and for  = 0,01/0,315 = 0,03175 returns the value Φ = 
19,438, so inductance of such a coil is equal to (in H) 
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The procedure presented so far was to find a coil of 
similar geometry and use a ready formula for its inductivity. 
However, none of the formulas took into account the spiral 
winding, i.e. the continuous increase of the coil radius rather 
than the stepwise coil, as for completely separate coils laid 
on each other. 
 

Inductance of the flat spiral coil wound with round wire 
There is a small amount of literature focussing directly to 

spiral coils. Most attention is paid by the author [4], where 
spiral coils are still treated in an approximate way as the 
concentricity of circular coils with a circular cross-section 
(Fig. 6). 

 

Fig. 6. Top view on a flat coil consisting of round circular wires 
 

Given there formula looks as follows 

(11)

  

   

   








cos2

d

cos

222

1

1

1

1 0 2
2

2

22

222
0

khrlhr

khrlhr

khrlhr
L

w
dp

w

zw

k

zw

l
w

dp
w

w
dp

w








   








 

Assuming that rw = Dw/2 = 0,1475; zw = 30 (number of 
spiral turns); dp = 0,0005; insulation thickness h2 = 1,67·10-4 
and using MathCad program for integral calculations, we 
get L = 506,4 H. 

 

Inductance of flat spiral coil 
The next method used to determine the inductance of 

spiral coil is taken from the monograph [1] (1926). The 
formulas and references to the tables contained there will 
be cited here. 

 

Fig. 7. Top and side view on spiral coil and its geometry 
 

Further calculations were performed with a coil of 
rectangular cross section and parameters b = w, c = nd, a = 
a1 + 0,5 (n-1)d, as shown in Figure 7. 

According to [1], the following algorithm was applied: 
a)  calculate the inductance of a rectangular coil (in H): 
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with the values of parameters for the test coil a = 0,15725;    
b = 0,02; d = 6,(6)·10-4; n = 30 and estimated parameters K 
= 0,215 and k = 0,0336 found in the Table 4 of [1]. 

b)  calculate the adjustment ΔL = 0,01257·n·a·(A1 + B1) 
respecting the winding shape and presence of insulation, 
where  d = 6,(6)10-4; t = 0,0005: 
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coefficients δ2-9 = 0,001 and 0 for all others, what gives the 
adjustment ΔL = 3,021·10-4 H. 
c) calculate corrected value of L:=L+ΔL = 510,9 H. 
 
Fields method 

Computer programs being currently in wide use for 
determining of fields distributions are equipped with tools 
supporting post-processing calculations. The Quickfield 
software [7] belongs to them and in the case of magnetic 
fields, among other things, can determine the inductance of 
a coil, using two different methods - on the basis of field 
energy or directly from the definition of the linkage flux. Due 
to the limitations of the program (student's version with a 
limited number of finite elements), the analyzed coil was 
modeled only as a solid body, without considering the inter-
turn insulation.  

 
 

Rys. 8. Magnetic field ditribution image together with inductance 
wizzard window and results of calculations. 

Nevertheless, the program allows to use the number of 
turns forming a specific coil thickness, although the 
geometric model does not show this explicitly, so it is a 
purely software operation. Then multiplier z2 appears, 
instead of dividing the entire current into n = z wires. The 
field type was selected as magnetostatic (I = const), the 
number of turns n = 30 and then the “Inductance Wizzard” 
was chosen. As we can see (Fig. 8) the inductances are as 
follows (in H): L = Ψ/I = 532,8 – from the linkage flux 
calculations and L = 0,5Wm/I2 = 500,2 – from the energy of 
magnetic field. 
 
 
 

Measurement by technical method 
As a criterion for assessing the accuracy of the methods 

used, a direct measurement of inductance by technical 
metod was performed [8]. With DC supply, one can 
measure current I, hence the resistance R = U/I, while with 
the AC supply of frequency f the measurement will show the 
value of impedance: 
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The measurements gives following results: R = 0,059 
Ω; Z = 0,18 Ω, what, for f = 50 Hz, leads to L = 549,8 μH. 
 
Conclusions 

The problem of determining the inductance of the spiral 
coil gave a chance to review various methods and formulas 
for coils geometrically similar to original one in shape. The 
results of calculations and measurements are given in 
Table 2. 
 
Table 2. Comparison of obtained inductances and relative error 

The variant/method 
Value 
in H 

ε 
% 

Solid ring of rectangular cross-section  525,5 4,4 
Solid ring of circular cross-section 505,8 8,0 
Coil of a square cross-section 525,7 4,4 
Coil of a circular cross-section 550,2 0,1 
Spiral coil with the wire of circular cross-section 506,7 7,8 
Flat spiral coil with tape winding of rect. shape 510,9 7,1 
Fields method 

on the base of linkage flux 532,8 3,1 
on the base of magnetic field energy  500,2 9,0 

Technical method – direct measurement  549,8 0,0 
 

Assuming that the self-inductance measurement 
obtained by the technical method will be referred to, it is 
concluded that all other methods did not exceed the error of 
more than 10%. The field method, despite quite a thick 
division into FEM elements, in the variant with the linkage 
flux - gives correct results (error of 3.1%), while on the basis 
of field energy - the biggest error, of 9%. 
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