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Streszczenie. Pomiar charakterystyk statycznych elementu nieliniowego można przeprowadzić wykorzystując podpróbkowanie Σ. W przypadku, gdy 
na wejście elementu nieliniowego jest podany sygnał sinusoidalny, jego sygnał wyjściowy jest odkształcony. Przedstawiono algorytm cyfrowego 
przetwarzania sygnałów, umożliwiający redukcję błędów pomiarowych. Przeanalizowano zależność błędów pomiaru charakterystyki elementu 
nieliniowego od krotności podpróbkowania, liczby próbek oraz błędów częstotliwości na przykładzie 2 typowych układów nieliniowych. 
Podpróbkowanie w zastosowaniu do badania charakterystyk obiektów nieliniowych w obecności zakłóceń 
 
Abstract. A measurement of static characteristics of nonlinear devices can be performed using a sigma undersampling. When the input signal of 
nonlinear element is sinusoidal, its output signal is deformed and contains an infinite series of harmonics. An algorithm of digital processing of the 
output signal enabling a reduction of errors is described. A dependence of the errors of the measurement on the parameters of the undersampling 
was  analyzed for 2 typical nonlinear elements.  
 
Keywords: nonlinear element, sigma undersampling, frequency fluctuations, Gaussian noise;  
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Introduction 

A continuing progress in the electronic technology 
comprises a progress in applications of nonlinear elements 
[1-2]. Contemporary electronic devices work, using lower 
levels of the signals and higher frequencies. To perform a 
correct design of the electronic device, the parameters of its 
components must be measured in proper conditions. It 
means proper levels of the signals and working frequencies. 
Classical methods of measurements of characteristics of 
the nonlinear elements could give inaccurate results for 
very high frequencies and low level signals. Therefore it 
forces an improvement of the method of measurement of 
the nonlinear element parameters. 

A method applying a sigma undersampling is proposed 
in this paper. It enables a reduction of errors, caused by 
fluctuations of frequency and an inaccuracy of measuring 
sensors. 
 

Description of the method 
  An idea of the proposed method assumes a reduction 
of errors arising during the measurement. The output signal 
of the examined nonlinear element must be sampled in 
order to apply a signal processing of the results of the 
measurements. Two kinds of errors are taken into 
considerations. The first one arises from an inaccuracy of 
the measuring system. The second one is the error coming 
from the incoherence between the sampling generator and 
the generator of the input signal. To minimize the first kind 
of errors an integration of the output signal of the device 
during the sampling period is applied. According to Central 
Limit Theorem a variance of the noise decreases 
proportionally to the time of the integration. Therefore the 
sampling period should be as long as possible. On the other 
side, the extension of the sampling time causes the 
difference of the phases between the input and the 
sampling signals is getting greater. In this case the second 
kind of errors becomes significant. Because of this a special 
algorithm reducing phase errors must be applied. 
 A scheme of measuring system is presented in Fig. 1. 
When a sinusoidal signal u(t) of the frequency f0 is applied 
as the input signal of nonlinear system, its output signal x0(t) 
is periodic and deformed, Therefore it can be expressed in 
form of Fourier’s series 
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X0 denotes the mean value of the signal, whereas Xm and φm 
- the amplitude and the phase of its mth harmonic, 
respectively. 

 
Fig.1. Scheme of system for measurements of static characteristics 
of nonlinear devices 
 
 When the static characteristic of the examined device is 
symmetrical with respect to a vertical axis, a spectrum of its 
output signal contains only odd harmonics. In the opposite 
case even harmonics appear in the spectrum of the output 
signal. Exemplary static characteristics of 2 nonlinear 
elements are presented in Fig. 2. The spectra of their output 
signals are shown in Figs. 3 and 4. 
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Fig. 2. Static characteristics x=f(u) of 2 nonlinear elements 
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Fig.3. Amplitude spectra of output signals for sinusoidal input signal  
of nonlinear elements 
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Fig. 4. Phase spectra of output signals of nonlinear elements for 
sinusoidal input signal  
 

As it was mentioned above, in order to reduce the noise 
of the detector, the time of the integration of the output 
signal ought to be maximally long. Therefore an 
undersampling of the output signal should be applied. The 
time of integration Td0 must satisfy a following condition [3-
12] 
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where M is an undersampling factor and N - a number of 
samples per period. The output signal is integrated during 
the sampling period. The output signal of the integrator y(t) 
can be expressed as 
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A comparison of (1) and (3) shows that the spectra of 
the signals are similar, whereas the phase of signal y(t) 
disagrees with the phase of the signal x0(t). The difference 
between the phases of both signals is constant for the 
particular harmonic and it equals mπ/N. Therefore to obtain 
the original signal a digital filter should be applied. Its 
transfer function H(f) must satisfy a following condition [13-
15] 
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where X0(f) and Y(f) denote the spectra of the signals x0(t) 
and y(t), respectively. Basing on (1) and (3) H(mf0) can be 
expressed as: 
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Exemplary spectral characteristics of the filter are 
shown in Figs 5 and 6. 
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Fig. 5. Amplitude characteristic of FIR filter H(z) for N=256, M=100 
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Fig. 6. Phase characteristic of FIR filter H(z) for N=256, M=100 
 

Considerations of the transfer function of the filter prove 
that it also works as an anti-aliasing filter, because its 
attenuation for the frequency f0 /2N exceeds 3 dB [13-15]. 
The transfer function of the filter is given by: 
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The method generates no errors itself on the condition, 
that the frequencies of the generators of the input and the 
sampling signals correctly satisfy condition (2) and the 
synchronization between the generator of the sinusoidal 
signal and the sampling generator is perfect. In the opposite 
case the phase of the measured signal fluctuates. Relative 
fluctuations of the frequency of the input signal and the 
sampling period are denoted δf and δTd, respectively. The 
real frequency of the signal and the sampling period can be 
expressed as [13-15]: 

(8)                             fff  10 ,     

(9)                           ddd TTT  10 .   

 An application of the integrator reduces the values of 
errors caused by the noise on the condition, that its mean 
value tends to 0. To reduce a probability of accidental 
errors, a multiple repetition of measurements should be 
applied. However it requires a perfect synchronization 
between the output signal of the examined nonlinear 
element and the sampling generator. This problem is solved 
by the application of the proper algorithm of the signal 
processing [13-15]. The single period of signal consisting of 
N samples is measured and, in the next step, FFT of the 
signal is calculated by means of the set of FIR digital filters. 
The results are memorized. This procedure is repeated P 
times. A geometrical mean of all FFTs is calculated in the 
next step. Finally, the results of the measurements are 
obtained using IFFT, calculated by another set of FIR digital 
filters. 
 The procedure described above can lead to the 
deformation of the measured characteristic, when the 
successive series of the samples are measured starting in 
different phases of the output signal. This defect appears 
mainly in the case, when the static characteristic of the 
examined nonlinear element contains a hysteresis loop and 
the non-zero mean value (the characteristic marked with 
green colour on Fig. 2). An elimination of this phenomenon 
is possible, when a preliminary synchronization of the signal 
is applied. The value X(1) of FFT for m=1 can be utilized to 
this purpose. Every series of the measurements must be 
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filtered by means of the FIR filter, which transfer function is 
given by 
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The result is compared to the corresponding value of the 
spectrum obtained in the first measurement. The minimum 
difference between both values is taken to further 
calculations. A scheme of preliminary synchronization is 
presented in Fig. 7.  
 

 
Fig. 7. Algorithm of preliminary synchronization system 
 
 The complete scheme of the digital processing system 
is shown in Fig. 8 
 

 
Fig. 8. Algorithm of signal processing system for measurements of 
static characteristics of nonlinear devices 
 
Simulations of the method and analysis of errors 

The method described in the previous section is applied 
to the simulations of the measurements of the static 
characteristics of two nonlinear elements shown in Fig 2. 

An estimation of the accuracy of described method was 
performed using the simulation in MATLAB. Calculations 
were performed P=106 times. The amplitude of the input 
signal is chosen so that the measurements of the full 
characteristic of examined element were possible. Results 
of simulations are evaluated by means of an error δ, defined 
as 
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where x0(k) are the samples of the output signal in ideal 
conditions (fluctuations of the frequency and errors of 
measuring sensors are equal 0) and x0max is the maximum 
value of the signal x0(t). 
 Fluctuations of the frequency of the input signal u(t) and 
the sampling period are random values described by 
Gaussian distribution with the variance δf (the frequency of 
the input signal) or δTd (the sampling period) and the mean 
values 0. A Gaussian noise of the mean value 0 and the 
variance σ was added to the output signal of the nonlinear 
element as the simulation of the errors of the deceiver. The 
undersampling factor M, the number of samples per period 
N and signal to noise ratio, defined as 
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were chosen as the parameters of the calculations. The 
results of the simulations for the element marked with solid 
line are shown in Figs. 9-12 and the results for element 
marked with dash line - in Figs. 13-16. 
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Fig. 9. Dependence of error δ on the fluctuations of frequencies for 
1st nonlinear element, SNR-1 = 0,2, N = 256 and M=100 
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Fig. 10. Dependence of error δ on relative power of noise and N for 
1st nonlinear element, M=100, δf =δTd=10-6 
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Fig. 11. Dependence of error δ on relative power of noise and M for 
1st nonlinear element, N=256, δf =δTd=10-6 
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Fig. 12. Dependence of error δ on N and M for 1st nonlinear 
element, SNR-1 = 0,2, δf =δTd=10-6 
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Fig. 13. Dependence of error δ on the fluctuations of frequencies for 
SNR-1 = 0,2 for 2nd nonlinear element, N = 256 and M=100 
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Fig. 14. Dependence of terror δ on relative power of noise and M 
for 2nd nonlinear element, N=256, δf =δTd=10-6 
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Fig. 15. Dependence of error δ on relative power of noise and M for 
2nd nonlinear element, N=256, δf =δTd=10-6 
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Fig. 16. Dependence of error δ on N and M for 2nd nonlinear 
element, SNR-1 = 0,2, δf =δTd=10-6 
 
Conclusions 

Presented results of calculations prove, that the sigma 
undersampling can be the effective method of the 
identification of nonlinear systems. The integration of the 
output signal reduces the influence of the errors of the 
detector, whereas the appropriate algorithm of the sampling 
enables the significant reduction of the errors caused by the 
fluctuations of the frequencies. For the numbers of samples 
per period in range 256-512 and the undersampling factors 
in the range of 100, the mean error of the measurement of 

static characteristic does not exceed 1 % for frequency 
disturbances in the range of 10-6.  

Although presented method requires the complicated 
digital data processing system its practical realization is 
possible. The significant advantage of presented method is 
the possibility of the measurements using very high 
frequencies and low levels of input signals. 
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