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Reduced Boundary Integral Equation for the Laplace, Poisson
and Helmholtz Equations in Annular Region

Abstract. Boundary integral model corresponding to the Laplace, Poisson and Helmholtz equations for circular and annular regions was considered
in the paper. By expanding the excitation and the solution into the Fourier series, the problem is reduced to purely algebraic for each angular
harmonic. An example of use of the reduced boundary integral equation is given. As a kind of by-product, some definite integrals were found.
(Zredukowane réwnanie catkowo-brzegowe dla réwnania Laplace’a/Poissona oraz Helmholtza w obszarze pierscieniowym,).

Streszczenie. Przedstawiono model catkowo-brzegowy dla réwnania Laplace’a, Poissona i Helmholtza w obszarach kotowych i pierscieniowych.
Wykorzystujgc rozwinigecie wymuszenia i rozwigzania w szereg Fouriera, zagadnienie zredukowano do czysto algebraicznego dla kazdej z

harmonicznych katowych. Zaprezentowano przyktad zastosowania. Jako produkt uboczny obliczono pewne catki oznaczone.
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Stowa kluczowe: model catkowo-brzegowy, zredukowane réwnanie catkowo-brzegowe, redukcja siatki, symetria cylindryczna.

Introduction

Mesh reduction is an important trend in computational
methods. One of the methods belonging to that line is the
boundary element method (BEM), e.g. [1-3]. It originates
from the boundary integral equation (BIE), which describes
the problem via the fundamental solution and the boundary
values of field. The main reason of using it seems the fact
of lowering the dimension of a problem. This results in
smaller number of equations. For example, BIE formulation
moves the calculations from a 3D region to its 2D boundary.

In case of certain symmetry a further reduction of the
dimension is possible. Consider, for example, a 3D region
of axial symmetry. Technically, BIE itself makes the
problem 2D, but the axial symmetry makes it possible to
consider the boundary in an axial cross-section, which is a
line (1D). The derivation for several types of equations can
be found for example in [2, 4]. A similar idea can be applied
for circular or annular regions. In such a case the reduced
boundary becomes a point or a set of isolated points. In
fact, the reduced BIE (RBIE) becomes an algebraic
equation then, and requires no numerical implementation in
the form of BEM. This procedure for selected types of
equations will be shown in this paper. From a general point
of view, such an approach belongs to the trend of using the
full information on the boundary shape, represented among
others by so called parametric integral equation system [5].
It is worth mentioning that there are other trials for
incorporating the cylindrical symmetry into BEM, e.g. using
circular elements [6].

RBIE in polar coordinates

Consider annular domain Q, whose internal and external
radius is a and b, respectively (Fig. 1). Suppose function u
satisfies the following equation:

(1) Vzu—Kzu:—f,

where f — known function, « — know constant. The
corresponding boundary integral equation written for point X
in domain Q or on its boundary S is as follows [1, 2]:
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Fig.1. Annular domain

where ¢(X) is the geometric coefficient, and G(X, Y) is the
fundamental solution for Eq. (1). In this case, boundaries S,
and S, are circles, hence Eq. (2) can be rewritten in polar
coordinates. Function u(X) can be expanded into complex
Fourier series with respect to angular coordinate as follows:

@) (X =u(r )= 3w () expiko),
k=—c0

where j is the imaginary unit, and

1 .
() ty () == [u(r, @)exp(= ko),
To

Similar formulas are for f{X). Using the expansions in Eq.
(2) and performing the integration with respect to angular
coordinate, one obtains:
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b
9) Fi(r) = [ /i (P)g4 (rp)dp.

Eqg. (5) is an algebraic equation. It does not require the
discretization of the boundary into elements. The
boundaries are now points corresponding to the radii of the
boundaries. If « = 0, the ring degenerates to a punctured
disk, and the terms involving a are absent in Eq. (5).
Similarly, if b = o, the terms with 5 can be removed from Eq.

®).

Using RBIE

The hardest part in the above procedure is determining
g and A&, This will be described in the next sections. Here, it
is just assumed that g; and #; are known. Eq. (5) can be
now used to solve a boundary integral problem in annular
region. For simplicity, it is assumed here that this is a
Dirichlet problem, i.e. u(a, ¢) and w(b, ¢) are known. By
Fourier series, also ui(a) and u(b) are known. As in BEM,
the first step is to determine the lacking boundary values, in
this case qi(a) and gi(b). To achieve this, Eq. (5) is used
twice: first with » = 4, and then with » = 5. Hence, the
following system of equations is obtained

gi(a,a)q;(a)— g (a,b)q; (b) =
= Fi(a) +[Iy (a,a) = Lluy (@) = by (a,byuy (b),
g (b,a)q,(a)— g, (b,b)q, (b) =
= F, (b) + Iy (b, @y (@) = [hy (b, b) + 3T (D),
where c(a) = ¢(b) = Y. The system of equations is then

solved with respect to gi(@) and ¢x(b). Having found these
values, one can put any r (¢ < r < b) into Eq. (5) to obtain

(1) u, (r) =h (r,a)u, (a) = h, (r,b)u; (b)

— & (r,a)q,(a) + g, (r,0)q; (b) + Fy.(r).
Then Eq. (3) can be used to find u(r, ).
The Laplace/Poisson equation case

If «x = 0, Eq. (1) becomes the Laplace or Poisson
equation, and the 2D fundamental solution is as follows:

1 1 1 2 9
12) G=—In——=——In[r" +p~ —2rpcos(0 — )],
(12) G=— X1 4= [7* +p” =2rpcos(® - ¢)]

where (r, ¢) and (p, 0) are polar coordinates of points X and
Y, respectively. Hence, after some transformations

2n
(13) g (r.p) =—4L J‘ln(r2 +p? —2rpcosy)cosky dy.
n
0

It is difficult to evaluate the integral directly. Case of k = 0
can be found in [11] as formula (4.224-14), which gives

14 =_pl LM:_ 1

(14)  go(r,p)=—pln plnmax(r,p).

Then, by Eq. (8)
. -1 forr<p,
—sgn(r —

(15) ho(r,p):—pM= —% forr=p,
r+p+|r—p| 0 forr>p

If £k # 0, then g, and &, are hard to evaluate directly (e.g.
Mathematica 7.0 fails). Tables of integrals [7] (formulas

4.397-6) can be helpful, but the integrals appear in [8]. The
result is

4 . le|
_p [rtp=lr=p]}" _ p (min(p)
(16) gk(r’p)_2|k|(r+p+|r—p|} _2|k|(max(r,p)j 5

[

sgn(r—p)( r+p—|r—p|
i (r.p) = 2 [r+p+|r—p|} B

(17)

_sgn(r—p)( minr,p) !
- 2 max(r,p) )

If necessary, Fi(r) given by Eq. (9) can be evaluated by
splitting the integration interval as follows:

r b
(18)  F(r)=[ /()i (r:p)dp+ [ fi (P)gi (r.p) dp.

Then the integrals can be found using appropriate forms for
gr,p)inintervals a<p<randr<p<b.

The Helmholtz equation case
If « # 0, Eq. (1) is the Helmholtz equation, for which the
2D fundamental solution is as follows:

(19) G:%KO[K\/rZ +p2 —2rpcos(6—(p)},
T

where K(z) is modified Bessel function of the second kind
of order 0. Simple transformations give

2n
(20) g (r.p) =2£ j KO[K\/FZ +p? —2rpcosw}cosk\ud\y.
n
0

This integral can be found in [7] as formula 6.681.13, but
only for £ = 0 and r = p. Integral 4, can be only found by
Mathematica 7.0 for £k = 0 and r = p, but it involves the
special Meijer G function. The general case requires special
methods. It can be shown (see Appendix) that

(21) 24 (r,p) = pI [k min(r, p) |K [k max(r, p)}

1, (k) K} (xp) for r <p,

22) hy (r,p) _ Ii (kr) K (kr) ;: 1 (kr) K (r) for r =p,
K|

I}, (xp)K . (xr) for r>p,

where [i(z) and K,(z) are modified Bessel functions of the
first and second kind, respectively, of order %, and the prime
denotes their derivatives. Due to the fundamental property
of the modified Bessel functions, it follows that

(23) I (z)&(z)—lk(z)K;(z):é,

and the case for » = p in Eq. (22) can be simplified in the
following way:

hy(r,r) = l+ krl, (kr)K . (xr)
(24) ’ 1
= _E+ krl, (k) K (k7).

Functions g(r, p) and & r, p) for selected values of
parameters are depicted in Fig. 2.
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Fig.2. Functions gi(r, p) and A(r, p) for selected k and « (solid lines
— real part, dashed lines — imaginary part)

Example

Consider a long, homogeneous cylinder of radius R and
electrical conductivity py, placed in an open conductive
medium of conductivity y, in which an externally applied
potential, Vy(r, ¢), exists. This potential can be expanded
into Fourier series so that its k-th term equals

2n

1 .
(25) Va (1) = - [V (r.9)exp(= jkp)do.
0

Eq. (5) can be used for the cylinder itself (with a =0 and b =
R) as well as for the external region (with a = R and b = ).
Taking into account the remarks below Eq. (9), the following
system of equations is obtained:

LV (R + (R, RV, (R) = g, (R, R)g{" (R),
LV, (R) =l (R, R)u (R) =
=-g; (R,R)g{" (R)+Vy (R),

where functions g, and 4, are given by Egs. (16) and (17),
and “int” and “ext” refer to the internal and external domain,
respectively. The continuity of current across the boundary
leads to relationship pg;"(R) = ¢;™'(R). Thus,

(26)

Voo (R) for k=0,
1) B2 2y () fork 20,

fork =0,

int _l ext _ 0
@8)  a(R)=—"di (R)_{Lin(R) for k # 0.

pHI R s

In the next step, again Eq. (5) is used for the internal
region (¢ =0,b =R, r<R):

Vi (R) = g4 (r, R)gi™ (R) = Iy (r, RV (R) =

(29) Voo (R) for k =0,
= - k
ﬁ(fj ‘Vsk (R) fork#0.

Similarly, Eq. (5) is used for the external region (¢ = R, b =
o, r > R) to obtain:

VEU(R) = =g (n R)gi™ (R) + by (r, RV (R) + Vi (R) =

(30) Vo (R) for k =0,
- [};—i(g)"‘ " 1}1/5,( (R) fork+0,

The final expressions for potential inside and outside the
cylinder are given by Eq. (3):

o 3
- 2 .
@) V™ (r,0) =Vso(R)+—1 > Vsk(R)(Lj exp(jko),
+ P R

k=0

¢ I-p & R X .
B2V () =V @)+ Vsk(R)(7j exp(jkg).

k=—x0

k#0

The expressions are equivalent to those obtained via the
method of separation of variables.

Extra results
By combining Egs. (20) and (21) the following formula is
obtained:

2n

I K0|:K\/}"2 +p2 —2rpcosw}coslnyd\y:
0

(33)
= 2/, [« min(r,p) K, [k max(r,p)]

for integer k. Differentiating the formula with respect to » or
p, one can obtain more integral formulas.
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Conclusions

The RBIE reduces the dimension of the problem to 1D
and makes the boundary integral equation an algebraic
one. In such a case, no numerical implementation in the
form of BEM is necessary. Its use in solving a boundary
problem is equivalent to the method of separation of
variables in polar coordinates.

Appendix — derivation of Eqgs. (21) and (22)
To obtain g; and 4, for the Helmholtz equation, let us
consider the equation in polar coordinates

1o( au) 1%
a ——|r—|+——-xu=0.
@ r@r[rér) 2 50> "

The method of separation of variables leads to the following
general solution:

o0

(b) u(r,0)= 3 [epdy (k) +dy K (k) lexp( ).

k=—o0

To obtain a finite solution in circular region 0 < » < p it is
necessary to put d; = 0. Therefore the amplitude of 4-th
angular harmonic equals ¢ [i(xr). On the other hand, the
corresponding RBIE is as follows:

(c) c(r)uy (r) + by (r,p)uy (r) = gy (r, P (1)

When r < p, ¢(r) = 1. Putting uy(r) = cili(xr) and ¢(r) = 1 into
this RBIE yields

(d) I (xr) + by (r,p) ;. (p) = g (r, )KL (k).

By using Eq. (8) this equation can be rewritten as follows:
01 /

(e) Pa—p Egk (r,p) {1 (xp) — g4 (r,p)xl (kp) = =1 (k).

This is a differential equation with respect to gi(r, p) with
constant » and variable p. It has the following solution:

() g (r,p) =pl; (xr) Ky (kp) + Apl; (kp),

where 4 is the integration constant, which can be found
using the boundary condition visible from Eq. (20),

r<p,

(9) 81 (0,p) =38 opKy (p),

where &y is the Kronecker delta. Hence 4 = 0.

The above procedure can be repeated for annular
region p < r < o, but this time ¢, = 0 is required to keep the
solution meaningful at infinity. Hence, K (ikr) should be used
instead of I,(xr). The relevant RBIE is now as follows:

(h) K (kr) = by (r,p)K; (p) = =g (r,p)kK (1cp)

(see remarks below Eq. (9)). This leads to the following
result:

(i) g (r,p) =pl (xp) K (xr) + BpK (xp),

where B is the integration constant.

r>p,

Hence, there are two forms of g;, given by Egs. (f) with 4
= 0 and (i) with certain B. To determine B it can be observed
that g, is a continuous function of » and p, as Eq. (20)
shows. Therefore, forms (f) and (i) should be equal for r = p:

)] rl, (xr)K (xr) + BrK (xr) = rl, (xkr) K (xr).
This is only possible when B = 0. Hence,
pl (kr)Ky (kp)
gk( ’ )=
pl; (kp) K (r)

what can be rewritten as Eq. (21).
To determine #;, Eq. (8) can be used.

(k)

Irp) g  [min(r, P)]—a mig;r, P) i [max(r,p)]+
I
’ + I, [min(r,p)JK ; [max(r, p)]—a ma(;gp(r, P,
Observe that:
(m) min(r,p) = Hp_fh_p', max(r,p) =PV Pl +2|r -0l

Hence,

Iy (rp) _ 1+ Sgnz(r =P 1t [min(r,p) K, [max(r,p)] +
p

+ le i [min(r, p) | [max(r, p)],

what can be rewritten as Eq. (22).

(n)
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