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Analysis of transient processes in a power supply system of
concentrated and distributed parameters based on variational
approaches

Abstract. Starting with variational approaches using a modified Hamilton-Ostrogradsky principle, a mathematical model of a power system is
developed and analysed as a concentrated parameters system for power autotransformer feeder reactors and capacitors and as a distributed
parameters system for supply lines. The final discretised state equations of the power system are represented in Cauchy format. Results of
computer simulations are presented as drawings.

Streszczenie. Korzystajac z podej$¢ wariacyjnych przy uzyciu zmodyfikowanej zasady Hamiltona-Ostrogradzkiego, opracowano matematyczny
model systemu elektroenergetycznego, ktéry analizuje sie jako ukfad o parametrach rozproszonych. Koricowe, dyskretyzowane réwnania stanu
systemu elektroenergetycznego sg przedstawione w formacie Cauchy'ego. Wyniki symulacji komputerowych przedstawiono na rysunkach. (Analiza
procesow nieustalonych w ukfadzie elektroenergetycznym o parametrach skupionych i roztozonych na podstawie podejs¢ wariacyjnych).
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telegraph equation, concentrated and distributed parameters system.

Stowa kluczowe: zasada Hamiltona-Ostrogradskiego, modelowanie interdyscyplinarne, system elektroenergetyczny, linia zasilania,
réwnanie telegrafistow, uktad o parametrach skupionych i roztozonych.

Introduction

Application of mathematical apparatus to modelling of
electrical power systems is virtually the most effective
method. This approach finds extensive applicability in the
case of power systems including long supply lines.

Such a system generally consists of widely different
parts: power plants, switching stations, supply lines,
compensation systems, and a number of other elements [1].
Long power supply lines are key parts in electricity
processing and transmission. High voltage lines between
local power systems constitute inter-system connections.
Fault currents, dependent inter alia on capacitances
between wires, and leakage currents, which depend on
electric charges on wire surfaces (corona discharge), must
be considered in these lines. Current in line wires generates
an alternating magnetic field that induces along a self-
induction SEM line. In addition, voltage between the line
wires is not constant either. To address current and voltage
variations along the line, it must be assumed each infinitely
short wire section exhibits resistance and inductance, with
capacitance and conductance between wires of that
section. In other words, the line should be treated as a
distributed parameters system [2].

In view of these conditions, use of ordinary and partial
differential equations, including the telegraph equation, is
recommended for analysis of transient processes in power
systems. Their solution is not a problem. Both analytical
and numerical methods are employed (D’Alembert’s,
Fourier’s, reticulated, and other methods.) Finding boundary
conditions for the telegraph equation as parts of the only
system of general differential equations of a power system
is the most complicated problem in analysis of transient
processes in power systems, on the other hand. The theory
of applied mathematics says Dirichlet first type, Neuman
second type, and Poincaré third type boundary conditions
serve to solve boundary problems [3]. Boundary conditions
of the first type are commonly used to solve the telegraph
equation in specialist publications [4]. This approach is
reasonable if functional dependences (charge, current or
voltage, depending on the type of telegraph equation [3]) at
a line’s start and terminal are known. In actual problems of
applied electrical engineering, meanwhile, these functional
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dependences at line terminals are unknown, for instance, in
analysis of complicated elements of power subsystems
connected with long lines. Since boundary conditions are
normally not known openly in our studies [3], the first-type
condition cannot be utilised.

Another approach, including the boundary conditions of
the second and third types, is necessary to solve real,
complex power systems. This will employ not functional
dependences but spatial functional derivatives, as well as
equations of these functions. Use of Neuman and Poincaré
conditions allows for exclusion of e.g. voltage from a system
of discretised differential equations in fictitious discretisation
nodes, reducing them to a single system of differential
equations where the number of unknowns is the same as
the number of equations.

From the viewpoint of mathematical modelling, two
approaches are commonly applied to analysis of transient
processes in dynamic systems: classic and variational — in
our case interdisciplinary. As part of the former, a sole
dynamic system is analysed as a combination of non-
stationary systems. For example, power engineering and
mechanical equations are combined by means of
equations relating equilibrium of moments [1, 3, 5, 6, 7]).
The defect of this method is obvious: relational equations
cannot be fully solved in distributed parameters systems,
which in turn restricts adequacy of the integrated system
model. This defect does not apply to the variational
approaches in [3], where a new interdisciplinary method is
developed modifying Hamilton-Ostrogradsky principle by
expanding the Lagrange function with two components:
energy of dissipation and energy of external non-potential
forces. This modification of the principle of least action
allows for applying the variational approach that is fully
comparable to classic approaches [3].

The objective of this study is to develop a method of
analysing transient processes in complicated power
systems of concentrated and distributed parameters based
on variational approaches.

Mathematical model of the system
A power system shown in Fig. 1 is used in connection
with transient processes in this article. A three-phase supply
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line with the default voltage of 750 kV in its single-phase
and single-line version is the central element of the system.
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Fig. 1. Circuit diagram of a local power system

N sources of infinite power are connected to the left side
of the line by means of non-linear power autotransformers
with a transformation coefficient of 750/330. Tr
autotransformers in Figure 1 operate as an electricity
receiver shown as M equivalent networks of the default
voltage 400 kV. This system is addressed as a
concentrated parameter arrangement. Symmetrisation of
the system’s operating conditions, including those of a
400 kV supply system, is a key issue. Air-spaced coils are
added to the system, therefore, in order to symmetrise its
operation.

Hamilton-Ostrogradsky action functional
system in Fig. 1 is as follows:

[3] for the

) S= IL +jL,d1 di, I= jL,dz
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where § — Hamilton-Ostogradsky actions, 7 — energetic
functional, L, — linear density of the modified Lagrangian
and its corresponding linear densities of all the foregoing
energies.
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where L* — modified Lagrangian, 7* — kinetic energy
(coenergy), P* — potential energy, ®* — energy of
generalised dissipation forces, D* — energy of lateral non-
potential forces.
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where: L — left-hand side index of power supply to the line,

R — right-hand side index of power supply to the line, ¥ —
associated streams, i — currents, i(x, t) — current across the
line, Ry, g0, Co, Ly — line parameters, ®; — dissipation of
external energy, @y — dissipation of internal energy, O(x, 1)
— load on the line, N, M — number of autotransformers; e(¢) —
electromotive forces; Ly, — total inductances of the line and
of the electric power system; Lz, — inductances of air-
spaced coils; Ry, — total resistances of the line and of the
electric power system; Ry, — resistances of air-spaced coils;
C;1, C;, — capacitances of the line; O¢;1, Oc;, — electric loads
for capacitors Cyy, Cpa; rrij, 'roys 711, Fro; — FESiStances of the
primary and secondary power autotransformer windings.

Solving (1) — (7) — see examples in [8, 9] - produces
Euler-Lagrange equations:
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WY-model of the autotransformers will be converted into
an appropriate A-type model [3]:
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where 4y, ; — coefficients dependent on reverse inductances
of power autotransformers [3].
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where i, i, — currents across primary and secondary
autotransformer windings.

Relations among the line elements will be formulated
taking the second Kirchhoff's law for distributed parameter
electric circuits as the starting point [2, 3]
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Equations (13) and (20) are then discretised using the
straight line method (central derivative) [1]
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By solving (10) — (12), (14) — (17) together with (21),
(22), the following will then result:
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Node voltages V,,; will now be determined, see Fig.1.
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The line currents will be obtained by discretisation
(20) using the straight line method, though now by means
of the right-side derivative [3]:
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The system of equations: (11), (12), (14) — (17), (21),
(26), (27) will be jointly integrated owing to (18), (19), (23) —
(25).

Results of computer simulations
A computer simulation of transient processes was
applied to the instance of the power system illustrated in
Figure 1 assuming N = M = 2. Where the system operates in
a steady state, symmetrical three-phase short-circuiting
takes place on the side of voltage 400 kV (K in Fig. 1,
t=0.2s). The system’s parameters: e;; = 622sin(wt + 0°) kV,
er;=619sin(wt +2.3°)  kV,  ep;=581sin(wt+11.9°) KV,
Cpr = 593511’1(0)1 + 1490) kV, rrpp =Fro = 0.98 Q, LTL[ = LTLZ =
0.188 H, rTR1=rTR2=0-95 Om, LTRIZLTR2= =0.184 H,
RV,] =4.805 Q, LV,I =0.189 H, CL,I = 1139910-6 F, RV,Z =4.267
Q, Ly,=0.163H, C;,=0.7979-10° F, Rg,;=Rz,=558 Q,
Lp;=Lz,=472H. The line is 476 km long, while: Ry=1.9-10"
5Q /m, Ly=9.24-107 H/m, Cy=1.3166-10"" F/m, gy =3.25-10"
' Sm/m.
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Fig. 2. Distribution of space voltage (1) and current (2) distribution
across the supply line for the time ¢ = 0.0005 s

Distribution of space voltage (1) and current (2) across
the supply line is presented in Figure 2. Note the highly
complex process of an electromagnetic wave expanding
along the line. The voltage in the initial line section is 45kV,
at the terminal -20kV, whereas it is zero in the middle part
of the line.

Figures 3 and 4 show temporary current and voltage in
the middle section of the supply line when loaded.

At the instant r=0s, all the existing SEMs were
connected to the system and the amplitude of the voltage
function in the steady process reached 620 kV, with current
- 0.7 kA.
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Fig. 3. Temporary voltage in
the middle of the line
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Fig. 4. Temporary current in
the middle of the line
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Fig. 5. Current ig,» of the Fig. 6. Current iry s oOf the
autotransformer Tg, 750/400 kV.  autotransformer Tg; 750/400
kV.

Analysis of Figures 5 and 6 shows the temporary
currents across the power autotransformer windings on the
side of 400 kV contain aperiodic components. This is
related to presence of shunt short-circuit reactors on the
400 kV side. On short-circuiting (t=0.2 s), the short-
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circuiting current iz,, of Tz, reaches 3 KA and ir,; of Ty,
reaches the value of 9.4 kKA.

Fig. 7. Temporal-spatial distribution of the voltage function within
the time range t € [0.19; 0.24]s.

Fig. 8. Temporal-spatial distribution of the current function within
the time range t € [0.19; 0.24]s.

Figures 7 and 8 contain spatial waveforms of voltage
and current. They are very important from a user’s point of
view, since they indicate temporal-spatial distribution of the
waveforms after short-circuiting. A physical effect — motion
of an electromagnetic wave along a supply line — can also
be seen in Figures 7 and 8.

Conclusion

1. Application of modified Hamilton-Ostrogradsky principle
to mathematical modelling of dynamic systems,
including power systems, allows for describing an
integrated power system with equations relying on a
single energetic approach only.

2. Finding initial and, in particular, boundary conditions is
an important part of solving boundary or mixed
problems. Boundary conditions of the second and third
types need to be employed to search for the latter in
power systems.

3. Results of computer simulations enable analysis of
dynamic states, of use at the stages of design and
operation of power facilities.

4. Graphs of complicated functional dependences in
supply lines should be presented in 3D space. Such
graphics allow for analysis of electromagnetic wave
motion in space and time.
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