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Eigenvalue and eigenmode analysis in eddy current material 
testing 

 
Abstract. These paper presents the application of eigenvalue and eigenmode analysis in eddy current testing of conducting materials. The 
investigations deals with a model of eddy current sensor over the testing object. The mathematical model is defined by a Helmholtz equation and it is 
the fundamental model to eigenmode analysis. It can be classified as a quasi-static problem in electromagnetics. With finite element method (FEM) 
the eigenvalues of systems are calculated and the distribution of magnetic flux density (mode) for the eigenvalue are presented.  
 
Streszczenie. W artykule przedstawiono zastosowanie analizy modalnej i analizy wartości własnych dla modelu przetwornika wiroprądowego 
umieszczonego nad badanym obiektem wykonanym z metalu lub stopu. Model matematyczny opisany równaniem Helmholtza jest modelem 
wyjściowym do analizy modalnej rozważanego układu „przetwornik – obiekt badań”. Wartości własne układu jak również rozkład modalny indukcji 
obliczono za pomocą Metody Elementów Skończonych. (Analiza wartości własnych i analiza modalna w badaniach materiałów metodą 
prądów wirowych). 
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Introduction 
Eddy current methods are fast and effective for non-

destructive conductivity measurement of materials such as 
metals, metal alloys and semiconductors. They can be also 
applied in thickness of walls measurements. The methods 
are important and oft used for detecting and sizing most of 
the flaws in conducting materials. Small initial cracks on 
material surface which can’t be detected with ultrasonic 
testing, could be mostly evaluated with eddy current testing. 
Eddy current sensor (transducer) can have different 
geometrical construction. Typically, they have one 
inductance coil for exciting the electromagnetic field (E) and 
one or more measurement coils (M) [1,2]. In Figure 1 there 
are shown two various types of eddy current sensors. The 
absolute sensor (a) will be used for testing objects with big 
dimensions. Sensors for testing pipes or wires have usually 
a construction embracing them as shown in Figure1b. 
 

 
 

Fig. 1. Exemplary schematic diagrams of eddy current sensors, a) 
surface absolute probes, b) probes with encircling coils, E – 
exciting coil, M – measure (output) coil 

 
In the time harmonic analysis electrical current in the 

circular exciting coil can be put as IE = I exp (jωt). 
The amplitude and phase of the eddy current output 

signal in measurement coil depends on several parameters 
e.g.: conductivity σ and relative magnetic permeability µr of 
materials of the testing object, electrical permittivity ε of 
sensor enviroment (air), frequency f and current of the 
excitation coil IE, distance h  between probe and a 
specimen, temperature T, material errors such as 
discontinuity or non-homogeneity [3]. 

 
Mathematical model of a sensor with testing material 

The Maxwell’s equations for eddy current sensor and 
conducting material have form 
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where: H


- magnetic field intensity, 
ej


- current density in 

exciting coil, D


- electric displacement (electric flux density), 

E


 - electric field intensity, B


 - magnetic flux density, P


- 

electric polarization vector, M


- magnetization vector, ε0 -  
permittivity of vacuum, εr -  relative permittivity of material, 
µ0 - permeability of vacuum, µr- relative permeability of 
material, ρ - electric charge density [4]. 

In case of axial symmetry in cylindrical coordinates for 
sinusoidal excitation current, the eddy current sensor model 
can be described with the Helmholtz equation for the 
magnetic potential vector A


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where: jeφ azimuthal coordinate of current density in the 
exciting coil, Aφ azimuthal coordinate of magnetic potential 
vector. For insulator (exemplary air) from equation (8) holds 
k2 = ω2µε  and for good conductors k2 = -jωµσ. Equation (7) 
was the basic equation applied to calculate the 
electromagnetic field around eddy current sensor with Finite 
Element Method (FEM). 
 
FEM simulation multi - coil transducer model 

An axial symmetry Comsol [5] model of multi - coil eddy 
current sensor over testing materials is shown in Figure 2. It 
consists of one exciting coil E and seven measure coils M1 
÷ M7 of 1 mm  wire diameters (pancake coil). For numerical 
simulations, the tested material (iron) is taken of 
conductivity σ = 10 MS/m and relative permeability µr = 1. 
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The sensor coils are made of copper of conductivity 58·106 

S/m and µr = 1. The flaw is modeled as ring discontinuities 
(material: air) with a rectangular cross section of height h   
and width 0,5 mm lying in distance d  under the surface. 
The thickness of tested specimen (metal plate) is 2cm. 
 

 
 
Fig. 2. Axial symmetry Comsol model of multi-coil eddy current 
sensor over the plate of conducting material with rectangular cross 
section flaw, E – exciting coil, M1 ÷ M7  - measure coils 
 
 FEM evaluations of distribution of electromagnetic fields 
for conducting material, have been depicted in Figure 3. For 
calculations the current density in the excitation coil E was 
equal je = 106 A/m2. There are a distribution absolute value 
of magnetic flux density B norm  and eddy current density 
jφ.  

 
a)  magnetic flux density B norm 

 

 
b)  eddy current density jφ 
 
Fig. 3. Magnetic flux density (a) and eddy current density (b) 
around the sensor model over material with flaw at frequency f = 
100Hz; parameter of material: σ = 107S/m, µr = 1; flaw cross section 
dimensions 2,5mm×0,5mm.  
 
Eigenvalue problem for pancake multi - coil transducer 
model 

The model of eddy current sensor together with testing 
object made of conducting material can be described with 

partial differential equation for magnetic vector potential A


 
[3, 6] 
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 exciting current density. For axial symmetry 

model in cylindrical coordinates and with non-zero 
azimuthal exciting current density vector jeφ, holds equation  
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A homogeneous equation can be written 
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to Eq. (12) we became the form 
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where is element of eigenvalue set of equation. Each 
eigenvalue corresponds its eigenfunction  ii  . Deriving of 

eigenvalues depends on finding such values of 
i , for 

whose there exist nontrivial solutions of Eq. (14) with 
respect of boundary conditions, resulting in evaluation of set 
of eigenvalues and set of corresponding them 
eigenfunctions  [6-8]. For homogenous isotropic materials µr 
and σ are scalars, so in Eq. (14) they can be extracted 
before del operator 
(15)      AAr  11

0
1 . 

The obtained solution is in form of a sum of products of a 
function dependent on spatial coordinates and a time 
function (Ritz series) [9] 
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where  ii  are eigenfunctions (another name eigenmodes) 

of magnetic potential vector described with equation (15). 
For this equation, eigenvalues 

i  are reverse of relaxations 

time 
i  

(17)  
i
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Eigenvalues can  be interpret as inverse of propagation 
time constants of losses (decay) of disturbances of 
electromagnetic field in testing materials. A maximal value 
of time constant can be calculated as an inverse of min - 

minimal value of eigenvalue set. 
 
Eigenmode and eigenvalue analysis results 

Eigenfunction  ii   for magnetic flux density for the 

least four eigenvalues
i  (i =1, 2, …4) calculated for eddy 

current sensor model and testing specimen fabricated from 
ferromagnetic material (Figure 2) are shown in Figure 4. 
The values of eigenvalues are real and positive. The set of 
eigenvalues has infinite number of elements but practically 
the crucial properties of the investigated system are 
approximated by some first of them. The algorithm  allows 
to calculate all values in a given range. 

In Figure 5 is drawn a histogram for eigenvalue set of i  

(i = 1 ÷ 250) calculated for eddy current sensor model with 
testing ferromagnetic materials. It is a typical shape of 
Poisson distribution. The most instants of eigenvalues 
concentrates at the neighborhood of zero. 
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Fig. 4. Eigenfunction  ii   for magnetic flux density (module) and 

corresponding eigenvalue
i  (i = 1…4) for multi-coil eddy current 

sensor model and ferromagnetic material without  flaw  
 

 
Fig. 5. Histogram of eigenvalue set i  (i = 1 ÷ 250) for testing 

system of ferromagnetic material without flaw 

A minimal value of eigenvalue set of investigated 
system depends on conductivity and also on permeability of 
materials. In Figure 6 the minimal value of eigenvalue set 

min  is depicted versus material conductivity in range of (1 ÷ 

60) 106 S/m – specific for metals and alloys.  
 

 
Fig. 6. Eigenvalue min  of system from Figure 3 versus material 

conductivity 

 
When in material exist flaws such as discontinuities, the 

eigenvalues of investigated systems are changing. For 
instance a flaw with cross-section dimensions 2,5x0,5mm 
buried under 1mm film (Fig.3.) results in decreasing of 0.7 
% the minimal eigenvalue. 
 
Conclusions 

The results of eigenvalue analysis for models of 
electromagnetic systems have shown the coincidence 
between eigenvalue spectrum of an FEM model for the 
electromagnetic quasi-static problem, described by the 
Helmholtz equation, related to testing material parameters 
and flaw dimensions. Knowledge of relaxation time is 
inherent for mathematical modeling a some physical, 
biological or medicine effects. During eigenvalue analysis is 
possible to describe dynamic properties of mathematical 
models for this effects. 
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