
78 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 9/2017

Tomasz CHMIELEWSKI1, Piotr MARS1, Miłosz MIŚKIEWICZ1, Paweł BŁASZCZYK1

ABB Corporate Research Center in Krakow (1)

doi:10.15199/48.2017.09.15

Universal DLL based components for simulations of
multiphysical electro-thermal systems

Abstract. This paper presents the procedures for universal models preparation of components and devices that can be used in various simulation
software environments that can be used for electro-thermal systems analysis. Such approach is applicable for multiphysical analyses in areas such
as electrical engineering, electronics and physics. The proposed method that involves generation of DLL libraries is explained based on
multiphysical model comprising electric and thermal subsystems. The paper highlights a complementary benefit of models black-boxing that may
play an important role for know-how protection. The analyses performed herein revealed that proposed universal models are able to produce
credible quantitative results in case of all considered software environments (PSCAD, Matlab, DIgSILENT), however with significant differences in
the recorded computation time.

Streszczenie. Niniejszy artykuł przestawia metodę przygotowania uniwersalnych modeli komponentów, możliwych do użycia w różnych
środowiskach symulacyjnych służących do analiz multifizyczyny w dziedzinach takich jak elektrotechnika, elektronika i fizyka. Zaproponowana
metodyka uwzględniająca generację bibliotek DLL została przedstawiona w oparciu o multifizyczny model składający się z części termicznej i
elektrycznej. Przeprowadzona analiza wykazała dużą zbieżność wyników pomiędzy rozpatrywanymi programami symulacyjnymi (PSCAD, Matlab,
DIgSILENT), jednakże z zauważalnymi różnicami w długości trwania obliczeń. Uniwersalne modele komponentów bazujące na bibliotekach
DLL do symulacji multifizycznych systemów elektro-termicznych

Keywords: PSCAD, DIgSILENT, Matlab, multiphysics, simulation, modelling
Słowa kluczowe: PSCAD, DIgSILENT, Matlab, symulacje multifizyczne, modelowanie

Introduction
 Nowadays computer simulations are an indispensable
aid tool for design, development and research. Thanks to
variety of modern simulation software environments nearly
every physical phenomenon can be digitally reproduced
and accordingly analysed. Such approach is a cost efficient
solution for design optimization, non-destructive testing or
product development. As can be seen in Fig. 1 which
exhibits nowadays common approach to research process,
the simulations (virtual experiment) are typically a step
preceding the laboratory experiments. However, if model
has been already verified experimentally the simulation may
as well become nearly fully credible substitute for
experiments.

Fig. 1. Modern research approach

 Despite the rapid development of computation
technology and decreasing impact of hardware constraints,
certain limitations of the simulation software still exist. This
fact stimulates the development of highly specialized
software packages, dedicated for small range of
phenomena. Hence the software vary significantly in their
functionalities, elements libraries, user interfaces,
performance rates etc. Due to the increasing number of
cross-area projects there is often a need for know-how and
model exchange. Such demand is sometimes problematic
to be met due to significant differences between the
simulation environments. Therefore, it is beneficial to create
procedures for model or elements import/export in order to
accelerate the analysis (the time consuming model

preparation could be possibly avoided). Another motivation
for adopting the models from the foreign software is
possibility of increasing the performance of simulations.
This feature could for instance be of a particular importance
in case of software that provides parallel threads
calculations. The possibility of software capability
(universality) improvement is also a great benefit of flexible
model exchange. For example, such procedure could
potentially facilitate multiphysical simulations that involve
combined e.g. electrical and mechanical elements.
 There are essentially three ways that allow to adapt
whole or partial model to the external software (Fig. 2),
however most of them requires a substantial effort for the
model conversion. The most time consuming is the
straightforward method i.e. building the model from scratch
followed by the verification with use of base model.
However some of the programs provide automated modules
that allows the quick import of models from external
programs (e.g. PSCAD, NEPLAN, DIgSILENT). It is usually
very limited and non-flexible functionality. The indirect way
to combine models from two software environments is
extraction of data from one software and feeding it as an
input to another one. Moreover, in some cases there is a
default online link that allows simultaneous simulations in
two different programs (e.g. PSCAD and Simulink).

Fig. 2. Possibilities for including the foreign models from external
software

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 9/2017 79

 The method presented herein which is based on DLL
libraries utilisation can be considered as one of the most
efficient and universal. What is important, the utilization of
DLL libraries features a black-boxing of the model (at least
to a certain degree). The benefits of combining the different
software can be also found in [1–10].
 This paper aims mainly at comparison of different
simulation software environments that use a DLL based
primary model. In such a way it can be clearly
demonstrated how the calculations time varies depending
on the software applied.

Universal DLL models preparation procedure
 In order to generate the multi-system simulation model,
an universal tool must be used. It can be observed that
much more companies are supporting external model
interfacing based on the Dynamic Linked Library objects
(DLLs) [11–13]. The library can be prepared in any
environment (windows-based) and simulated in different
simulation software.
 The key issue is to provide a clear interface between
DLL and simulation software. One promising mechanism is
an IEC standard [14] which defines what functions should
the DLL include and how they are called. Main functions
are:
• Model_Getinfo() providing general information about the
model,
• Model_Instance() creating the instance of the model
(multi-instancing is supported),
• Model_Initialize() initializing the model,
• Model_Outputs() performing simulation time step giving
model outputs,
• Model_Terminate() shutting down a specified model
instance.
 As an example, DLL generation process from Simulink
model has been presented. The process can be divided in
three main stages:
 1. Creation of simulation model including DLL-to-be

block and test harness,
 2. Generation of DLL from the block,
 3. Testing DLL in the root-software (Matlab/Simulink).

Creation of simulation model
 In the first step simulation model including test harness
should be created. It is crucial because testing DLL in the
3rd party software can be problematic. For example in case
of bug, it is hard to be located, especially if it is related to
the implemented algorithm, interface or to the simulation
software which is used. An example test system is
presented in Fig. 3. Yellow block is to-be-DLL system and
grey one is a placeholder for DLL. There are two main
reasons to have that system: First, check the system
behaviour. Second, check (in the step 3) if DLL works in the
same way as the base system. In case of this paper the
original model was created in Matlab/Simulink software.

Fig. 3. Test harness

Generation of DLL
 DLL in Matlab/Simulink can be generated automatically
from the source model using code generation tool (what
requires Matlab, Simulink and Embedded Coder ®
toolboxes).
 The output of the code generation is a set of source (*.c)
and header (*.h) files which can be used in an external
project or be compiled through Matlab. For that, the
compiler must be associated and makefile should be
generated. The makefile contains instructions how to create
the project, how to compile it and what files should be
generated (Fig. 4). In case of this paper the resulting DLL
model is compliant with the IEC 61400-27-1 standard,
Annex F (Generic Software Interface for use of models in
different software environments) [14]

Fig. 4. DLL generation process

DLL testing
 The final step is DLL testing which can be performed in
the test harness presented in Fig. 3. However, first the
Simulink block calling DLL should be created. The process
of block generation is a straightforward – it is required to
call a few-line script which generates a block calling defined
DLL. Next the block can be placed in the place of grey block
in Fig. 3 and output of its block should be compared with an
original output (of the yellow block on the Fig. 3). If the error
is on the acceptable level (some rounding errors can be
observed), DLL can be distributed. If no, generated code
must be checked to find the root cause of the difference
between the base model and DLL.

Description of utilized simulation environments
 DIgSILENT stands for DIgital SImuLation of Electrical
Networks. This simulation environment is a CAE tool for the
modelling and analysis of transmission, distribution, and
industrial electrical power systems. The software is
designed as an advanced integrated and interactive
simulation software tool package dedicated to electrical
power system and control analysis in order to reach the
main objectives of planning and operation optimization.
The IEC compliant dynamic heater library for EMT and
RMS simulations is implemented in PowerFactory using the
“digexfun interface”. The functionality of the “C – Interface”
is implemented in the DSL (DIgSILENT simulation
language) functions that are provided by the “digexfun
interface” (via the compiled DLL). The digexfun.dll file acts
as a middle layer that calls the functions of the heater
library and makes the results available to PowerFactory

80 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 9/2017

simulation SW. This solution supports multiple instances of
one external DLL model [11].
 Nonlinear equations are solved using iterative method
like the Newton-Raphson algorithm.” For heavily loaded
large transmission systems, the classical Newton-Raphson
algorithm utilizing the Power Equations formulation
generally converges best. Distribution systems in particular
unbalanced distribution systems are generally better
coverage utilizing the Current Equations formulation [11].
 The PSCAD program (Power System Control Aided
Design) is used for modelling and simulation of various
types of power systems. It is most commonly used to
simulate the time-domain transients in power systems. It
allows modelling them with taking into consideration
measurement and control systems.
 The DLL model implementation in PSCAD environment
is easy and no additional DLLs has to be created. However
for supporting multiple instances it is needed to attach
separate DLL file for each instance [12]
 Simulink is an environment which uses block diagrams
to create complex systems for multiphysical simulations. It
is dedicated for model-based design approach. Furthermore
it supports simulation, and automatic code generation which
has been used to create the code script from block diagram
heater model and then to generate the DLL model. [13]

Case study description
 The test system used for universal model procedure
presentation and testing comprises thermal and electrical
subsystems. The room temperature control system has
been modelled comprising the room thermal model – [5],
the electric radiator and the PI controller - Fig. 5.

Fig. 5. Room temperature control system – overall diagram

The ambient temperature is considered constant. The
heat qi used as the input for thermal model is generated by
phase currents flowing through resistors in accordance with
the Joule - Lenz law presented in equation [15] (1).

(1)
2

2 33 














 
  dt

L

uu
RiRq RS

phphphi

The current is expressed as the integral of the voltage
drop across the inductor over an inductance. This results
from the transformation of the equation (2) describing
relation between voltage and current across an inductor.

 (2)
dt

di
Luuu RSL 

where: qi – heat, uS – supply voltage, uR – voltage drop over
resistance, uL – voltage drop over inductor L – heater
inductance, Rph – phase resistance of the heater, iph –
phase current .

The heater thermal model cooperation with the
surroundings is described by the (3).

(3)
dt

dT
C

R

TT
q meas

r
ra

refmeas
i 




 The equation (3) can be rewritten to the form presented
in (4).

 (4)
rar

ref

r

i
meas

rar

meas

RC

T

C

q
T

RCdt

dT


1

The solution of (4) determines the room temperature
which states the model output and is compared to the
reference value – eq. (5).

 (5) 













rao
rar

refRC

t

raimeas Rqt
RC

T
eRtqtT rar)()(

where: qi – heat function of time, qo – Initial heat Tmeas –
measured room temperature, Tref – reference ambient
temperature, Rra – resistance between room and ambient,
Cr – room thermal capacitance.

The difference between measured and reference
temperature yields the error value for the input of PI
regulator which controls the phase currents by changing the
electrical circuit phase resistances. As a result, PI regulator
controls the amount of the generated heat thus contributing
to increase of the room temperature. In the DLL model
approach which is depicted on the Fig. 6 electric circuit is
represented as the controlled current source.

Fig. 6. Test model with implemented DLL based element

Phase voltages and the reference temperature value are
the inputs of the DLL model – Table 1.

Table 1. DLL model inputs
Name Unit Description
V1 [V] Phase 1 to ground voltage measurement
V2 [V] Phase 2 to ground voltage measurement
V3 [V] Phase 3 to ground voltage measurement
Tref [°C] Temperature reference

 Input signals interact with the hidden inside the DLL
mathematical model which represent the electrical heater
and its cooperation with the environment. After processing
input signals the DLL model returns the reference phase
current values for controlling the current source and the
measured room temperature – Table 2.

Table 2. DLL model outputs
Name Unit Description
I1ref [A] Phase 1 current reference
I2ref [A] Phase 2 current reference
I3ref [A] Phase 3 current reference
Tmeas [°C] Temperature reference

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 9/2017 81

Table 3. Model parameters
Parameter Value Description
Ts 0.1e-3 Sample time [s]
L 0.01e-3 Heater inductance [L]
Cr 100e3 Room thermal capacitance
Rra 1e-6 Room-ambient resistance

The values of model parameters used in simulations are
listed in the Table 3.

To compare calculation time of the DLL model in various
simulation environments, PSCAD, Matlab/Simulink and
DIgSILENT PF software have been installed on the same
computer with parameters presented in Table 4. Simulation
software versions are given in the Table 5.

Table 4. Parameters of computer used for simulations
System Windows 7 Enterprise
Processor Intel® Core™ i7-3720QM CPU @ 2.60 GHz
RAM 12.0 GB
System type 64-bit

Table 5. Software version used for simulations
Software Version
PSCAD 4.6 withGFortran 4.2.1
Matlab 7.9 (2009b) withSimulink 7.4, SimPowerSystems 5.2
DIgSILENT PowerFactory 15.2.7 64-bit

For comparing the simulation performance time the
classical test case was created. Namely, the reference
temperature STEP signal from 10°C to 22°C was supplied
to the input of DLL model. These conditions were the same
for each of instances. Simulation time has been measured
for every test case. For better performance all
measurements visualisations like current, temperatures,
voltages, etc. were switched off.

Fig. 7. Multi-instancing modelling approach

 The simulations were performed for different number of
simultaneous instances: one, two, four, six, eight and ten.
One instance means that one room temperature control
system has been used during simulation running, this
approach is visualized in the Fig. 7
 Measurements of the simulation execution time was
done by using tic toc function in Matlab/Simulink, observing
runtime messages (total CPU time parameter) in PSCAD
and for DIgSILENT the Python script was used which runs
the simulation, stops it and returns the simulation execution
time value. Every simulation has been performed ten times
and average value of execution time has been calculated.

Results and discussion
 Model has been interfaced in three different simulation
environments as the universal DLL model. Convergence
test employing one control system has been initially
performed. Temperature measurement has been taken as
it is presented in the Fig. 8a.
a)

b)

Fig. 8 Temperature response for reference step change: (a) –
temperature trace, (b) – relative error between the Matlab/Simulink
DLL model and other utilized software

RMS value has of one phase current has been also
shown for the same purpose (Fig. 9a).

a)

b)

Fig. 9. Step response – RMS value of current phase A: (a) –
current trace, (b) – relative error between Matlab/Simulink DLL
model and other utilized software

9

11

13

15

17

19

21

23

‐1 0 1 2 3 4 5 6 7 8

[oC]

[s]

Temperature

T ref Matlab PSCAD DIgSILENT

9

11

13

15

17

19

21

23

25

27

29

‐1 0 1 2 3 4 5 6 7 8

[kA]

[s]

Phase A RMS Currents

Matlab PSCAD DIgSILENT

82 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 9/2017

 Both, temperature and current curves are showing good
convergence between Matlab, PSCAD and DIgSILENT
PowerFactory. The relative error calculated for both
parameters is time dependent. In Fig.8b and Fig.9b it can
be observed, that the highest difference between the base
Matlab/Simulink model occurs at the first steps of the
simulation. The error exhibits a very fast decay for both
temperature and current and reaches values close to zero
after no more than 0.2 seconds of the simulations.
The graph of execution times for different simulation
environments is shown in the Fig. 10.

Fig. 10. Time of simulation runs for different number of instances in
model

 As can be observed, PSCAD gives the best
performance when four to ten instances in model are
introduced. Execution time of model comprising one or two
control systems is shortest in Matlab/Simulink operating in
accelerator simulation mode. The slowest environment is
recognized to be Matlab/Simulink at normal operation mode
and for model containing six and more instances and
DIgSILENT PowerFactory for lower number of instances.

Conclusions
 The procedure for universal DLL based model
preparation presented in this paper demonstrated a few
interesting and potentially beneficial features. One of the
greatest advantage of the DLL modelling approach is the
protection of intellectual property. DLL models act as a
black box, details about the system are not visible for users.
Other advantage of using DLL models is fast
implementation in various simulation software. The once
performed framework can be modified and used for other
DLL. Furthermore this approach enables the easy multiple
instances implementation in various simulation software,
which may effectively decrease the simulation execution
time. Furthermore, utilization of the DLL based model
produces the error on the acceptable level with only some
rounding errors visible. All in all, the DLL based universal
model may be extremely useful both in terms of the
technical features and the business operation.

Authors: mgr inż. Tomasz Chmielewski, mgr inż. Piotr Mars, mgr
inż. Miłosz Miśkiewicz, mgr inż. Paweł Błaszczyk, ABB Corporate
Research Center, ul. Starowiślna 13a, 31-038 Kraków, E-mail:
tomasz.chmielewski@pl.abb.com, piotr.mars@pl.abb.com,
milosz.miskiewicz@pl.abb.com. pawel.blaszczyk@pl.abb.com,

REFERENCES
[1] S.H.A. Niaki, H.K. Karegar, M.G. Monfared, Electrical Power

and Energy Systems A novel fault detection method for VSC-
HVDC transmission system of offshore wind farm, Int. J. Electr.
Power Energy Syst. 73 (2015) 475–483.
doi:10.1016/j.ijepes.2015.04.014.

[2] X. Wang, M. Yue, E. Muljadi, PV generation enhancement with
a virtual inertia emulator to provide inertial response to the grid.
Energy Conversion Congress and Exposition (ECCE), (2014),
17-23.

[3] F. Shahnia, A. Ghosh, G. Ledwich, F. Zare, Electrical Power
and Energy Systems Voltage unbalance improvement in low
voltage residential feeders with rooftop PVs using custom
power devices, Int. J. Electr. Power Energy Syst. 55 (2014)
362–377. doi:10.1016/j.ijepes.2013.09.018.

[4] L. Davila-gomez, A. Colmenar-santos, M. Tawfik, M. Castro-
gil, Simulation Modelling Practice and Theory An accurate
model for simulating energetic behavior of PV grid connected
inverters, Simul. Model. Pract. Theory. 49 (2014), 57–72.
doi:10.1016/j.simpat.2014.08.001.

[5] T.S. Abuaisha, General study of the control principles and
dynamic fault behaviour of variable-speed wind turbine and
wind farm generic models, Renew. Energy. 68 (2014) 245–254.
doi:10.1016/j.renene.2014.01.004

[6] Souli, Aissa, Abdelhafid Hellal, and Slami Saadi. Programming
EMTP-ATP-PSCAD Software Functions using MATLAB for
Power Systems Transient Analysis. Przegląd Elektrotechniczny
86.6 (2010): 285-287.

[7] Marciniak, L. Implementacje modeli łuku ziemnozwarciowego
w programach PSCAD i Matlab/Simulink. Przegląd
Elektrotechniczny 88.9a (2012): 126-129..

[8] Liu, Xiaolei, A. H. Osman, and O. P. Malik, Advanced
simulation tool for relay testing. Power Symposium, 2008.
NAPS'08. 40th North American. IEEE, (2008).

[9] P. Bjorklund, J. Pan, C. Yue, K. Srivastava, A New Approach
for Modeling Complex Power System Components in Different
Simulation Tools, 16th Power Syst. Comput. Conf. (PSCC 2008
Glas. 1 (2008).

[10] Troudi, M., et al., Macro-modeling for the compact simulation
of single electron transistor using SIMPLORER.,
Microelectronics Journal 38.12, (2007), 1156-1160.

[11] DIgSILENT GmbH, DIgSILENT PowerFactory User Manual,
(2015) 453–454, 633–646.

[12] PSCAD User Manual, (n.d.).
[13] Matlab/Simulink User Manual, (n.d.).
[14] IEC 61400-27-1, Electrical simulation models – wind turbines,

edition 1.0, (2015) 81–86.
[15] W.M. Rohsenow, J.P. Hartnett, Y.I. Cho, Handbook of heat

transfer, McGraw-Hill New York, (1998).

