Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Elektryczny

Nieobciążone estymatory parametrów rozkładu potęgowego

Streszczenie. W pracy sprawdzono właściwości estymatorów parametrów rozkładu potęgowego. Wychodząc z nierówności Rao-Cramera wyznaczono wariancję najefektywniejszego estymatora parametru kształtu. Zaproponowano nową postać nieobciążonego estymatora parametru skali.

Abstract. The paper examines the qualities of estimators of power distribution parameters. Starting from the Rao-Cramer inequality, the variance of the most efficient estimator of the shape parameter is determined. And a new form of the unbiased estimator of the scale parameter is proposed. (Unbiased estimators of power distribution parameters).

Słowa kluczowe: niezawodność, rozkład potęgowy, estymacja parametrów, estymator nieobciążony Keywords: reliability, power distribution, parameter estimation, unbiased estimator

Wstęp

W probabilistycznych modelach niezawodnościowych elementów i systemów, m.in., jest wykorzystywany rozkład potęgowy [1,2,3,4]

Funkcja gęstości rozkładu potęgowego wyraża się wzorem:

(1)
$$f(t) = \frac{a}{b} \cdot \left(\frac{t}{b}\right)^{a-1}$$

gdzie: a – parametr kształtu, b – parametr skali.

Podstawową charakterystyką rozkładu trwałości elementu jest funkcja ryzyka (intensywność uszkodzeń):

(2)
$$\lambda(t) = \frac{f(t)}{1 - F(t)}$$

gdzie f(t)- określa wzór (1)

$$F(t) = \left(\frac{t}{b}\right)^{a}$$
 - dystrybuanta rozkładu potęgowego.

Ze wzorów (1) i (2), uzyskuje się [1]:

(3)
$$\lambda(t) = \frac{a}{b} \cdot \left(\frac{t}{b}\right)^{a-1} \left[1 - \left(\frac{t}{b}\right)^a\right]^{-1}$$

Na rysunku 1 przedstawiono przebieg funkcji intensywności uszkodzeń (funkcji ryzyka) wyznaczony na podstawie wzoru (3).

Rys. 1. Przebieg funkcji intensywności uszkodzeń dla rozkładu potęgowego. Linia ciągła odpowiada parametrowi kształtu a=0,5; linię przerywaną wykonano dla a=1,0

Teoretyczny przebieg funkcji intensywności uszkodzeń rozkładu potęgowego dla parametru *a=0,5* wykazuje dużą zgodność z empirycznym rozkładem funkcji ryzyka. Na rysunku 1 można wyróżnić trzy okresy [4]. Odcinek czasowy [$0; t_w$] odpowiada okresowi wstępnej eksploatacji, w którym eliminuje się obiekty z dużymi wadami produkcyjnymi. Odcinek czasowy [$t_w; t_e$] odpowiada

okresowi właściwej (normalnej) eksploatacji. Ostatni przedział czasowy $t > t_e$ to okres starzenia się obiektów. Z rozpatrzonego przykładu wynika zaleta rozkładu potęgowego, która polega na tym, że przy nieskomplikowanej postaci gęstości rozkładu (wzór (1)) możliwe jest dopasowanie do zróżnicowanych charakterystyk niezawodnościowych obiektu.

Estymacja parametru kształtu

W celu oceny jakości wyznaczonych estymatorów, zostały wykonane symulacje komputerowe z wykorzystaniem generatora liczb losowych o rozkładzie potęgowym [5]:

$$(4) t = b \cdot r^{\frac{-}{a}}$$

gdzie $r \in (0;1)$ zmienna losowa o rozkładzie równomiernym, t – zmienna losowa o rozkładzie potęgowym.

Przyjmuje się, że próbka liczy N elementów - w dalszej części zostanie rozpatrzone N \in [5;20]. Obserwacje zostają uporządkowane w kolejności rosnącej:

(5)
$$t_{(1)} < t_{(2)} < \dots < t_{(N)}$$

Wykonując estymację metodą największej wiarygodności (MNW), wyznacza się logarytm funkcji wiarygodności:

(6)
$$\ln L(a,b) = n \ln a - na \ln b + (a-1) \sum_{i=1}^{N} \ln t_{(i)}$$

Z warunku koniecznego istnienia ekstremum:

(7)
$$\frac{\partial \left[\ln L(a,b) \right]}{\partial a} = 0$$

wyznacza się postać estymatora parametru kształtu [1,2,3,6]:

(8)
$$\hat{a}_0 = \left\lfloor \ln t_{(N)} - \frac{1}{N} \sum_{i=1}^N \ln t_{(i)} \right\rfloor$$

Do oceny jakości estymatora będzie stosowane względne obciążenie estymatora *ba:*

(9)
$$ba = \frac{E(\hat{a}) - a}{a}$$

gdzie - $E(\hat{a})$ wartość przeciętna oszacowania parametru *a a* – wartość dokładna parametru kształtu (nastawy generatora).

Obliczenia wykonano dla następujących wartości parametru a oraz parametru b:

(10) a=1/3 ; a=1/2 ; a=1 ; a=2; a=3; b=10

W ramach symulacji komputerowych wykonano K=100000 powtórzeń, na podstawie których wyznaczono obciążenie estymatora [$E(\hat{a})$ -a] oraz jego wariancję.

Estymator \hat{a}_0 jest obciążony, ponieważ (przykładowo) dla N=5 oraz a=1/3 względne obciążenie wynosi ba_0 =0,667.

Mając na uwadze duże wartości obciążenia estymatora uzyskanego MNW, w pracy [5], wykorzystując sieci neuronowe oraz metodę bootstropową, wyznaczono współczynniki korygujące wzór (8). Uzyskano następującą postać estymatora parametru kształtu:

(11)
$$\hat{a}_{1} = d_{N} \cdot \left[ln(c_{N}t_{(N)}) - \frac{1}{N} \sum_{i=1}^{N} ln t_{(i)} \right]$$

gdzie współczynniki c_N oraz d_N określa tabela 1.

Tabela 1. Wartości współczynników korygujących estymatory parametrów rozkładu potęgowego [5]

Ν	5	6	7	8	9	10	11	12
c_N	1,235	1,900	1,541	1,125	1,109	1,096	1,092	1,081
d_N	0,796	0,820	0,862	0,874	0,889	0,897	0,907	0,926
Ν	13	14	15	16	17	18	19	20
c_N	1,072	1,064	1,063	1,058	1,058	1,051	1,041	1,044
d_N	0,921	0,919	0,928	0,943	0,941	0,948	0,951	0,957

Na podstawie wzorów (9) i (11) wyznaczono względne obciążenie estymatora \hat{a}_{1} , zaprezentowane na rysunku 2.

Rys.2. Wartości względnego obciążenia estymatora \hat{a}_1 .

Kolejne krzywe $ba_{1,k,N}$ na rysunku 2 odpowiadają następującym wartościom parametru kształtu a:

k=0 - *a*=1/3 ; *k*=1- *a*=1/2 ; *k*=2- *a*=2 ; *k*=3 -*a*=3.

Z rysunku 2 wynika, że estymator \hat{a}_1 jest obciążony – względne obciążenie estymatora osiąga wartość kilkudziesięciu procent. W związku z powyższym nie będzie wyznaczana wartość wariancji estymatora. Mianowicie, efektywność estymatora, mierzona jego wariancją, wyznacza się dla estymatorów nieobciążonych [7].

Obszerną analizę dotyczącą estymacji parametrów rozkładu potęgowego można znaleźć w pracy [2]. M.in. zamieszczono tam postać nieobciążonego estymatora parametru kształtu:

(12)
$$\hat{a}_2 = \left(1 - \frac{2}{N}\right) \cdot \left[ln(t_{(N)}) - \frac{1}{N} \sum_{i=1}^N ln t_{(i)}\right]^{-1}$$

Dla rozpatrywanych w pracy wartości parametrów (wzór (10)) uzyskano względne obciążenie $ba_2 \in (0,00000184; 0,00114)$. Ze względu na pomijalnie małe wartości ba_2 ,

zrezygnowano z prezentacji rysunku przedstawiającego względne obciążenie jako funkcję liczby obserwacji *N*. Wychodząc z nierówności Rao- Cramera [7]:

(13)
$$V(\hat{a}) \ge V_{min} = \left[N \int_{0}^{b} \left[\frac{\partial \ln f(t,a)}{\partial a} \right]^{2} f(t,a) dt \right]^{-1}$$

uzyskuje się następującą wartość wariancji estymatora najefektywniejszego:

$$V_{min} = \frac{a^3}{3N}$$

Efektywność e estymatora \hat{a}_2 określa wzór [7]:

(15)
$$e = \frac{V_{min}}{V(a_2)}$$

gdzie - V_{min} określa wzór (14); $V(a_2)$ - wariancja estymatora \hat{a}_2 .

Na rysunku 3 przedstawiono wartości efektywności estymatora \hat{a}_2 jako funkcję liczby obserwacji *N*. Zastosowano następujące oznaczenia: linia przerywana z iksami $e_{1,N}$ odpowiada *a*=1; linia kropkowana z plusami $e_{2,N}$ wyznaczona dla *a*=2 oraz linia ciągła z kółkami $e_{3,N}$ wyznaczona dla *a*=3.

Rys.3. Efektywność estymatora \hat{a}_2 .

Z rysunku 3 wynika wzrost wartości efektywności estymatora \hat{a}_2 dla rosnących wartości *N* a także dla zwiększających się wartości parametru kształtu *a*.

Estymacja parametru skali

W przypadku parametru skali zawodzi MNW. Mianowicie, pochodna cząstkowa logarytmu funkcji wiarygodności (wzór (6)) względem zmiennej *b* wyraża się wzorem:

(16)
$$\frac{\partial \left[\ln L(a,b) \right]}{\partial b} = -\frac{na}{b} = 0$$

który nie prowadzi do wyniku. Najprostszym estymatorem parametru *b* może być największa zaobserwowana wartość zmiennej t [1,2,3]:

(17)
$$b_0 = t_{(N)}$$

Na rysunku 4 przedstawiono wartości względnego obciążenia estymatora \hat{b}_0 . Z rysunku wynika ujemny znak obciążenia, co oznacza, że ze wzoru (17) uzyskuje się zaniżone (niedoszacowane) wartości parametru skali *b*. Duża wartość względnego obciążenia, rzędu kilkadziesiąt procent, dyskwalifikuje estymator \hat{b}_0 .

W pracy [5] dokonano również korekty estymatora parametru skali:

$$\hat{b}_{l} = c_{N} t_{(N)}$$

gdzie - c_N określa tabela 1.

Rys.4. Wartości względnego obciążenia estymatora \hat{b}_0 .

Na rysunku 5 przedstawiono wartości względnego obciążenia estymatora \hat{b}_1 . Zastosowano analogiczne oznaczenia jak na rysunku 2, co oznacza, że kolejne krzywe na rysunku 5 rozpatrywane od dołu, odpowiadają następującym wartościom parametru kształtu *a*:

a=1/3 ; a=1/2 ; a=2 ;-a=3. Z rysunku 5 wynika, że pomimo korekty wykonanej w pracy [5], estymator parametru b jest obciążony – zbyt duże wartości względnego obciążenia.

Rys.5. Wartości względnego obciążenia estymatora \hat{b}_1 .

W pracy [2] znajduje się następujący wzór;

(19)
$$\hat{b}_2 = t_{(N)} \left[1 + \frac{1}{\hat{a}_2(N-1)} \right],$$

który opisuje nieobciążony estymator parametru skali *b*. Na rysunku 6 zamieszczono wartości względnego obciążenia estymatora \hat{b}_2 .

Rys.6. Wartości względnego obciążenia estymatora b_2 (oznaczenia jak na rysunku 5).

Pomimo, że wzór (18) odnosi się do nieobciążonego estymatora, to rysunek 6 nie potwierdza tej właściwości. Występuje duża wartość obciążenia np. dla parametru kształtu *a*=1/3 (linia ciągła z kółkami) oraz *a*=1/2 (linia kropkowana z iksam) dla N=5 względne obciążenie wynosi odpowiednio: 0,253 oraz 0,193 Porównując rysunek 4 i rysunek 6, stwierdza się przeciwne znaki obciążenia. Sugeruje to utworzenie estymatora jako średniej ważonej estymatorów \hat{b}_0 i \hat{b}_2 :

$$\hat{b}_3 = 0.33b_0 + 0.67b_2$$

gdzie - $\hat{b}_0 i \ \hat{b}_2$ opisują odpowiednio wzory (17) i (19).

Ze wzorów (17),(19) i (20), uzyskuje się:

(21)
$$\hat{b}_3 = t_{(N)} \left[1 + \frac{0.67}{\hat{a}_2(N-1)} \right]$$

Na rysunku 7 przedstawiono wartości względnego obciążenia estymatora \hat{b}_3 jako funkcję liczby obserwacji *N*. Współczynniki wagowe występujące we wzorze (20) dobrano tak, aby dla N \in [6 ; 20] wartość względnego obciążenia estymatora \hat{b}_3 nie przekraczała 4% (rysunek 7). Jedynie dla *N*=5 oraz *a*=1/3 $bb_3 = 4,6\%$.

Jakkolwiek estymatora \hat{b}_3 , w porównaniu z wcześniej rozpatrzonymi estymatorami parametru skali, wykazuje znacznie mniejszą wartość względnego obciążenia, to

Rys.7. Wartości względnego obciążenia estymatora b_3 .

jednak trudno uznać go za estymator nieobciążony. Dlatego autor publikacji przeprowadził badania symulacyjne mające na celu korektę wzoru (19) w celu minimalizacji wartości obciążenia. Efektem tego eksperymentu numerycznego jest estymator o następującej postaci:

(22)
$$\hat{b}_4 = t_{(N)} \left[1 + \frac{1}{\hat{a}_2(N+n_N)} \right]$$

gdzie współczynnik n_N opisuje tabela 2.

Tabela 2. Wartości współczynnika n_N korygującego estymator parametru skali (wzór (22))

Ň	5	6	7	8	9	10	11	12		
n_N	1,689	1,511	1,430	1,362	1,320	1,281	1,253	1,232		
Ν	13	14	15	16	17	18	19	20		
n_N	1,214	1,206	1,200	1,196	1,191	1,187	1,182	1,182		

Rys.8. Porównanie wartości współczynnika n_N (tabela 2) oraz wartości nt_N (wzór (23)).

Na podstawie wyników zawartych w tabeli 2 wyznaczono postać wzoru aproksymującego wartości współczynnika n_N :

(23)
$$nt_N = \frac{7,435}{\left(N - 0,6\right)^{1,752}} + 1,133$$

Ostatecznie, można zaproponować następującą postać estymatora parametru skali:

(24)
$$\hat{b}_5 = t_{(N)} \left[1 + \frac{1}{\hat{a}_2(N + nt_N)} \right]$$

gdzie - \hat{a}_2 jest opisane wzorem (12); nt_N - wyraża się zależnością (23).

Dla wartości parametrów opisanych zależnością (10) wyznaczono względne obciążenie estymatora wyrażającego się wzorem (24). W zależności (10) uwzględniono tylko jedną wartość parametru skali: *b*=10. Wynika to z faktu, że względne obciążenie estymatora parametru skali nie zależy od wartości parametru *b*.

Rys.9. Wariancja estymatora \hat{b}_3 (Vb_3) oraz estymatora \hat{b}_5 (Vb_3).

Podsumowując obliczenia stwierdza się, że względne obciążenie $bb_5 \in$ (-0,00071 ; 0,00125).Oznacza to, że esrtymator opisany wzorem (21) jest nieobciążonym estymatorem parametru skali.

Dla estymatora \hat{b}_3 oraz estymatora \hat{b}_5 wyznaczono wariancję Vb_3 oraz Vb_5 przedstawioną na rysunku 9. Z rysunku 9 wynika zbliżona efektywność obydwu estymatorów.

Podsumowanie

Rozkład potęgowy posiada następujące zalety [5]:

 pomimo prostej postaci gęstości rozkładu (wzór (1)) możliwe jest dopasowanie do zróżnicowanych charakterystyk niezawodnościowych obiektu; wartości zmiennej losowej zawarte są w skończonym zedziale;

- nieskomplikowany zapis matematyczny funkcji charakteryzujących rozkład.

W pracy rozpatrzono właściwości estymatorów parametrów rozkładu potęgowego Ocenę właściwości estymatorów wykonano w ramach symulacji komputerowych z wykorzystaniem generatora liczb losowych (wzór (4)).

Stwierdzono, że spośród trzech rozpatrzonych estymatorów parametru kształtu, estymator \hat{a}_2 (wzór (12)) jest nieobciążony.

Stosując nierówność Rao-Cramera wyznaczono minimalną wartość wariancji estymatora parametru kształtu (wzór (14)), co pozwoliło ocenić efektywność estymatora \hat{a}_2 (rysunek 3).

W przypadku estymatora parametru skali zbadano właściwości trzech estymatorów opisanych w literaturze (wzory: (17), (18), (19)). Na podstawie tej analizy zaproponowano estymator wyrażający się wzorem (21).

W wyniku eksperymentu numerycznego wyznaczono nieobciążony estymator parametru skali – zależność (24).

Z rysunku 9 wynika zbliżona efektywność proponowanych estymatorów parametru skali (wzory (21) i (24)). Oznacza to, że w miejsce wzoru (24) można posłużyć się wzorem (21), licząc się z możliwością wystąpienia niewielkiego obciążenia estymatora.

Autor: prof. dr hab. inż. Jan Purczyński, Zachodniopomorski Uniwersytet Technologiczny, Wydział Elektryczny, ul. Sikorskiego 37, 70-313 Szczecin, E-mail: janpurczynski@zut.edu.pl

LITERATURA

- Ciechanowicz K., Uogólniony rozkład gamma i rozkład potęgowy jako rozkład trwałości elementów, Archiwum Elektrotechniki, tom XX1(1972), z.3, 489-5121
- [2] Firkowicz S., Statystyczne badanie wyrobów, WNT, Warszawa, (1970)
- [3] Lesiński S., Niezawodność łączników energoelektrycznych, Badania i ocena, WNT, Warszawa, (1983)
- Paska J., Niezawodność systemów elektroenergetycznych, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, (2005)
- [5] Lesiński S., Estymacja parametrów rozkładu potęgowego, Przegląd Elektrotechniczny ,74 (1998), nr.9, 245-247.
- [6] White E.P., Enquist B.J., Green J.L., On estimating the exponent of power-low frquency distributions, *Ecological Society of America, Report, Ecology,* 89 (2008), Issue 4, 905-912
- [7] Fisz M., Rachunek prawdopodobieństwa i statystyka matematyczna, PWN, Warszawa, (1969)