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Effectiveness evaluation of the Lagrangian modified barrier 
function method on solving the optimal reactive power flow 

considering time-varying power demand 
 
 

Abstract. This paper proposes the application of the Lagrangian Modified Barrier Function (LMBF) method to solve the Optimal Reactive Power 
Flow (ORPF) problem in electrical power systems considering time-varying power demand. Some proper adaptations were accomplished to the 
LMBF method and evaluated on a three-bus test system for different power demand conditions. Even for stressed operational conditions the method 
demonstrated appropriated characteristics of convergence and precision.  
 
Streszczenie. Opisano wykorzystanie funkcji Lagrangian Modified Barrier Function (LMBF) do rozwiązania problemu optymalnego przepływu mocy 
biernej w sieci elektrycznej uwzględnmiając zmieniające się w czasie zapotrzebowanie na energię. Ocena skuteczności funkcji Lagrangian 
Modified Barrier Function do rozwiązania problemu optymalnego przepływu mocy biernej w sieci elektrycznej uwzględnmiając 
zmieniające się w czasie zapotrzebowanie na energię 
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Introduction 
The Optimal Power Flow (OPF) problem has been 

addressed in several nonlinear programming (NL) studies in 
order to optimize allocation of resources and enhance 
electrical system operation. A specific similar problem is the 
Optimal Reactive Power Flow (ORPF), where the decision 
variables are directly involved in reactive power control 
analysis [1]. 

In order to tackle NL optimization and satisfy all equality 
and inequality constraints, several strategies and 
approaches were developed, such as the use of barriers, 
penalties, Lagrangian functions, etc. 

Compared to classical barriers, modified barrier 
methods [2] have important advantages, as their finite 
convergence allows solutions on feasible region 
boundaries, and they are smooth and finite in a 
neighbourhood of the optimum. 

As presented in [1], the Lagrangian Modified Barrier 
Function (LMBF) method combines the best qualities of 
modified barrier and primal-dual interior point methods. 
LMBF depends on auxiliary variables and modified 
logarithmic barrier to deal with inequalities in the ORPF. In 
this sense, all original inequality constraints are transformed 
into equalities and a specific Lagrangian function is 
associated to the ORPF. A set of nonlinear equations is 
generated, when first order necessary optimal conditions [3] 
are applied on this Lagrangian function. Then the ORPF is 
solved by an adaptation of Newton’s method. The 
effectiveness of the LMBF on solving the ORPF on 
deterministic constant power demand conditions was 
verified in [1]. Also in [4], the method was adopted for 
controlling the power injected into a system by wind farm. 

In this paper, we propose to apply the LMBF [1] 
technique to the ORPF problem, where the power demand 
changes along the time. The main motivation is justified 
since random variation of electrical quantities is a concern 
mainly due to the insertion of mixed sources in modern 
power systems, such as wind penetration in the distribution 
networks [5]. In the formulation problem, the active power 
losses in the system [6] are assumed as objective function. 
To verify the performance of the methodology, some 
experiments are assessed in a 3-bus test system. With this 
goal, several numerical tests were performed under 
different and stressed demand conditions. The Lagrangian 
gradient infinity norm was used as stop criterion for 

convergence. The required number of iterations to achieve 
determined precision and the suitability of LMBF method for 
real-time applications are analysed. 
 

The Lagrangian Modified Barrier Function Method 
The main idea in using barriers in optimization problems 

is to initially solve an alternative problem as it was 
unrestricted, because the barrier, if properly set, does not 
allow violation of constraints. Then, the effect of the 
presence of the barrier itself diminishes as its parameters 
are updated, leading to the original problem approximate 
solution. 

Let fc (x) be a scalar cost (objective) function, with x a 
column vector of N decision variables. Also, let hi (x) and 
gj(x) be the i-th of Neq equality constraints and the j-th of 
Nineq inequality constraints, respectively. The original NL 
problem is stated as: 
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where B=[B1,,Bineq]
T  is an array of Nineq bounds, where 

odd and even entries stand for upper and lower bounds, 
respectively.  

After the modification of problem (1) consisting of 
addition of Nineq slack variables from a column array s, the 
problem is rewritten as [1]: 
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In (2), index k odd means inequality related only to 
upper limits, while even is for lower limits. The LMBF 
technique was implemented with logarithmic Frisch 
modified barrier [2]. For instance, if s1≥0, then ln(µ-1s1+1)≥0, 
where µ>0 is the barrier parameter. Applying the method 
proposed in [2], the system (2) is transformed into: 
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A modified barrier Lagrangian is associated with (3) as 
follows: 
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where λj, πk are entries of column vectors of the original 
equality constraints Lagrange multipliers and transformed 
inequality constraints Lagrange multipliers, respectively. In 
this implementation, only one barrier parameter, µ, is used, 
but Nineq different parameters could be used in (4). The term 
ui is the i-th element of the vector u of barrier Lagrange 
multipliers, artificially created with the barrier. 

Once the Lagrangian function in (4) is established, 
optimal first order necessary conditions are applied on it [3], 
generating a set of nonlinear equations: 

(5)         ( )2
, , , eq ineqN N N

sL x
L

d
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where d=[xT, λT, sT, πT]T is a direction search vector. Notice 
that no derivative of L with respect to u is taken, as it is 
updated with a separate rule.  

The equations in (5) with derivatives with respect to the 
original decision variables x represent the optimality of the 
problem regarding those variables. The equations involved 
in the differentiation of λ and π are related to the original 
equality constraints in (1) and the transformed inequality 
constraints in (2), respectively. Also, the equations with the 
derivatives with respect to s are involved with the modified 
logarithmic barrier. They must be satisfied for eliminating 
the effect of the presence of the barrier in the ORPF, and 
also for finding the original problem (1) solution. 

Newton’s method is used to solve (5). With this aim, at 
each iteration γ, the Hessian matrix defined by W=∂ L/∂d 
must be calculated. We need to solve the linear system 
W×∆d = - L(x,λ,s,π), where ∆d=[∆xT, ∆λT, ∆sT, ∆πT]T is an 
array of increments that is calculated to update d. However, 
its use is not straightforward as considered for the 
traditional Newton’s method. Then, few adaptations are 
required. Actually, the update is of the form [1]: 
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where αp and αd are the primal and dual step sizes used in 
the update. They must be properly selected in order to 
avoid that si < 0 or (-1)iπi < 0, i=1,…,Nineq. The barrier 
parameter is updated as [1]: 
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The barrier Lagrange multipliers u are updated as 
follows [2]: 
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The first iteration of Newton’s method can start with an 
unfeasible solution, but must be initialized with s >-µ [1]. The 
stop criterion used was based on the Lagrangian Gradient 
Precision (LGP) required for convergence. In this case, the 
infinity norm || L(x,λ,s,π)||∞ ≤ LGP . Also, it is possible to 
constrain the process to a fixed maximum number of 
iterations (MaxIt). 

The adoption to use the term || L(x,λ,s,π)||∞ in the stop 
criterion not only meet optimality equations, but also 

simultaneously guarantees that: all bounds are fulfilled; 
equality constraints (in the case of ORPF, the traditional 
power flow equations [6]) are satisfied; and the original 
problem (1) has been solved. 
 

LMBF applied on time-varying power demand ORPF 
The traditional power flow problem analysis assumes 

that the load has fixed parameter. For instance, the load 
can be composed of constant portions of impedance (Z), 
current (I) and power (P), the so called ZIP model [6]. 
However, considering practical conditions, the status 
(on/off) of loads is changing continuously as a function of 
time. Since we cannot control the status of loads, in the 
sense that a power source must always be available to 
supply them, the loads can be considered changing 
randomly in time. As a consequence, the system 
operational conditions might be evaluated stochastically. 

The power demand data is considered to be received 
from Ns samples, as a discrete load evolution along time, 
and will be referred along the text as Power Samples. This 
is intended to simulate the real-time monitoring of measured 
load. Each sampling time a new power sample is received, 
the applied LMBF must be able to follow the change in 
power samples, and provide an evolution of optimal 
solutions as well.  

Algorithm 1 presents the basic procedures of LMBF 
method when applied to solve the optimal reactive power 
flow in an electrical system with time-varying power 
demand. 
 
Algorithm 1 – LMBF applied in time-varying demand ORPF 
INPUT: Power Samples, electrical system model data, 

parameter values, bounds  

OUTPUT: Optimal solution for the ORPF 

1. Initialization 
2. Do k=1,2 ..., Ns 

3.      Receive k-th power sample  
4.      update L(x,λ,s,π) in (4) 
5.      If (k > 1), start with solution from previous power 

sample and reset µ and u values 
6.      Compute L(x,λ,s,π) and set γ=0 
7.      While (|| L(x,λ,s,π)||∞>LGP) AND (γ ≤ MaxIt) do 
8.           Compute Hessian W 
9.           Solve W×∆d = - L(x,λ,s,π) 
10.           update d with (6) 
11.           update barrier parameters with (7) and (8) 
12.           update γ as γ:= γ+1 
13.           Compute L(x,λ,s,π) with updated information 
14.      End While 
15. End Do k 
 

Line 5 in Algorithm 1 plays a key role, since starting 
from the previous solution and setting µ and u properly can 
significantly enhance the number of iterations required to 
achieve the desired LGP. On the other hand, setting very 
low values for this target index can lead to the LMBF 
inability to solve the problem, or it may converge to a wrong 
answer. 

In the ORPF, the decision variables are x=[θT,VT]T, 
where θ and V are, respectively, arrays of phase angle and 
voltage magnitude of all buses, except for the angular 
reference, which is fixed.  

In this case, the equations in (5) with differentiation in λ 
specifically lead to the traditional power flow equations [5,7], 
which must be satisfied in the optimization process. These 
equations are the balance of active power injection, at PQ 
and PV buses, and reactive power injection, at PQ buses: 
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where sp
kP  is the specified active power at buses of type PQ 

and PV, sp
kQ  is the specified reactive power at PQ 

buses,km stands for the angular deviation km=k-m, NPQ 
and NPV are the number of PQ and PV buses, respectively.  
The terms Gkm and Bkm are, respectively, the real and 
imaginary parts of the elements from the bus nodal 
admittance matrix, Ybus=G+jB [6], where j is the imaginary 
unit. The symbol i means a subset of buses with physical 
connection at bus i. 

The objective function assumed was defined as the total 
active power losses in the system, that is, the sum of all 
active power dissipation in the network interconnections: 
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L
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where gkm is the series admittance in the branch between 
bus k and bus m, ΩL is the subset of all branches in the 
system. 
 
Test system 

To demonstrate the efficacy of the methodology 
presented in this paper, experiments are carried out on a 
power system. The electrical test system considered 
consists in a three-bus network, extracted from [1]. Figure 1 
exhibits the one-line diagram of the system. Bus 1 is the 
slack (swing) bus [6], where the angular reference is fixed. 
Bus 2 is a PV bus type with active power injection. The load 
that dictates the power demand P3,L +jQ3,L is connected to 
bus 3, a PQ bus. The interconnection between two buses is 
modelled by single admittance y13 and y23. 
 

 
 

Fig.1. The three-bus system model 
 
The active and reactive power demand at bus 3, P3,L and 

Q3,L, are treated as inputs of the LMBF method. The load 
could be modelled by different functions of electrical 
quantities. However, in the experiments each power sample 
is treated as a constant power load. This means that the 
value of power demand is not influenced by the values of 
voltage (magnitude and phase) at any of the buses. 
Considering this, the analytical expressions for gradient  L 
and Hessian W will not change. Hence, lines 8 and 13 of 
Algorithm 1 can be accomplished with updated values 
instead of new computations for this aim. 

The voltage magnitudes at PV and swing buses, usually 
fixed in the traditional power flow problem [6], are left as 
degrees of freedom to be determined in the optimization 
process. 

All voltage magnitudes [V1, V2, V3] and reactive power 
injected in bus 2, Q2, have upper and lower bounds, giving 
Nineq=8. In fact, Q2 is: 
(12)       2 3 23 23 23 232 ( ) [ sin, ( ) cos( )]VQ V V G B      
 

Since NPQ = NPV = 1, there are 3 traditional power flow 
equations for this system, that is Neq = 3. Also, the problem 
in (5) results in N+Neq+2Nineq=24, which is the order of the 
Lagrangian gradient and the order of the Hessian matrix. 
We emphasize that experiments with larger systems could 
be carried out. Our preference for a simple test system is to 
facilitate the demonstration of the methodology and also to 
provide tools for easy reproduction of results by the users. 
 

Numerical Experiments and Results 
Several experiments were accomplished based on the 

test system presented in Fig. 1. For all experiments the 
tolerance MaxIt was set as a free value (very large value). 
Only power demand at bus 3 is supposed to change, while 
the electrical network remains unaltered. So, the expression 
of the Lagrangian gradient and Hessian are kept constant. 
Although computation time may differ from every machine, 
for purposes of reference Table 1 furnishes figures of 
simulations. The data include the CPU mean time required 
for performing all computations considering a set of Ns 
samples. The statistics also highlights the standard 
deviation of the CPU time at each iteration and the worst 
case for a single iteration, after 106 iterations. 
 
Table 1. Iteration computational figures after 106 iterations 

CPU mean value (second) 2.4283×10-4 
CPU standard deviation (second) 1.0346×10-4

CPU time worst case (second) ~1×10-3 
 

All experiments have been initialized with flat start 
condition (phase and magnitude voltages at 0 rad and 1 pu, 
respectively). The barrier parameters initial values were 
µ=0.1 and u set as an array of ones. For each new power 
sample evaluated, the initial values of µ and u are used.  

Table 2 presents the possible cases of bounds studied 
in this work. The case 2 is the one that presents broader 
limits. 
 
Table 2. Feasible intervals for different cases studied in this work 

Case Bound V1 V2 V3 Q2

1 
Lower 0.95 0.95 0.94

 

-1.30
Upper 1.05 1.10 1.05 1.30 

2 
Lower 0.90 0.90 0.90

 

-2.00
Upper 1.10 1.10 1.10 2.00 

3 
Lower 0.95 0.95 0.90

 

-1.30
Upper 1.08 1.10 1.05 0.90 

 

In the following, details are exposed about each 
experiment considering power demand characteristics. For 
each scenario the power demand has a Gaussian noise 
N(η,σ2), where η is the mean and σ, the standard deviation 
[7]. The experiments were assessed for ten scenarios (Si, 
i=1,,10) and two accuracy situations: LGP 10-4 and 10-8. 
Except for the scenario S10 with Ns=288 samples, all other 
simulations had 1440 power demand samples. Evidently, 
the sample interval period between two samples is set 
accordingly the power system utility. Then, except for the 
scenario S10, we supposed that an optimal power flow is 
solved (new power demand sample) considering an interval 
of one minute. Note that smaller or higher sampling 
intervals can be established without compromising the 
methodology adopted in this work. 

 
S1: active power constant at 1 pu and constant inductive 
power factor (PF) 0.92 plus noise N(0,0.12) added to both 
active and reactive powers. Bound case 1 from Table 2 is 
assumed. 
S2: same as test 1, but with noise replaced by N(0,0.32). 
S3: Q3,L constant at 1 pu and P3,L =2k/1440, k=1,…,1440, 
where k means an index for sampling time, in such way that 
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the active power is modelled as a ramp function with the 
final value 2 pu. Bound case 1 from Table 2 is assumed.  
S4: P3,L constant at 1 pu and Q3,L = -1 + 2k/1440, 
k=1,…,1440. Bound case 1 from Table 2. 
S5: Q3,L constant at 1 pu and P3,L = 1 + (k/1440)×(-1)k pu, 
k=1,…,1440. Bound case 1 from Table 2. 
S6: Q3,L =0.5 × P3 and P3,L = 1 + (k/1440)×(-1)k, k=1,…,1440,. 
Bound case 1 from Table 2.  
S7: same as test 6, but with Bound case 2 from Table 2. 
S8: P3,L = 1 - cos(2πk/1440), k =1,…,1440, and constant 
inductive PF at 0.92. Added noise N(0,0.22) to both active 
and reactive powers. Bound case 1 from Table 2. 
S9: same as test 8, but with bound case 2 from Table 2. 
S10: P3,L based on data acquired on [8] and constant 
inductive PF at 0.92. Added noise N(0,0.022) to both active 
and reactive powers. Bound case 3 from Table 2. 
 

For each power load sample, a number of iterations is 
identified aiming a given accuracy LGP, which is required 
for an optimal power flow. At the end of the process 
statistics of the number of iterations required by sample are 
evaluated. The numerical results regarding the number of 
iterations are displayed in Table 3 by considering two LGP 
values. 
 
Table 3. Results regarding number of iterations for each scenario Si  

Si 
Lagrangian 

gradient 
precision 

Mean 
number of 
iterations 

Standard 
deviation of 
iterations 

Maximum 
number of 
iterations 

1 
10-4 26.1021 3.3811 50 
10-8 50.6722 6.7244 118 

2 
10-4 38.9854 20.8672 159 
10-8 88.2535 86.0014 1344 

3 
10-4 39.3000 13.3182 86 
10-8 94.0139 88.2281 1306 

4 
10-4 40.5194 24.7685 157 
10-8 90.4194 104.7045 2067 

5 
10-4 39.3090 13.2648 88 
10-8 94.2708 92.9552 1786 

6 
10-4 48.9701 56.7408 1153 
10-8 104.4181 142.4373 3026 

7 
10-4 16.6708 1.5918 23 
10-8 31.7396 4.1431 46 

8 
10-4 51.8201 54.2751 681 
10-8 112.5903 153.3188 3314 

9 
10-4 18.5306 6.1921 86 
10-8 36.7521 18.0679 314 

10 
10-4 36.1563 31.8921 364 
10-8 73.6493 75.7221 772 

 
In Table 3, experiments on scenarios S6 and S8 were 

the most stressful to the system, and required the highest 
number of iterations. 

The bounds must be set accordingly, since narrower 
intervals may require more iterations as usual. See for 
instance results exhibited in Figure 2 for scenarios S8 and 
S9, for LGP 10-4. Similar observations may apply to a 
comparison between scenarios S6 and S7 in Table 3. 
Furthermore, very strict bounds may lead to an unfeasible 
operating point, where (1) has no solution. 

Figure 3 presents the power demand evolution for the 
scenarios S8 and S9. The plots highlight the severe 
disturbance caused by the presence of noise characterizing 
the power load. On the other hand, Figure 4 illustrates the 
evolution of voltage magnitudes on scenario S8  for  LGP 
10-8. It can be seen that V1 remains between its bounds of 
0.95 pu and 1.05 pu, the magnitude V3 remains between 
0.94 pu and 1.05 pu, while V2 is submitted to its upper 
bound of 1.10 pu. Clearly, the LMBF was successfully able 
to find the optimal solutions, even for stressful experiment.  

 
Fig.2. Iteration number evolution on scenarios S8 and S9 

 

 
Fig.3. Power demand on scenarios S8 and S9 
 

 
Fig.4. Voltage magnitudes evolution for scenario S8 
 

The daily power demand based on real data acquired 
from [8] is presented in Figure 5, for the scenario S10. For 
this scenario, a power demand sample is taken at each five 
minutes, totalizing 288 samples along a day (24 hours, i.e., 
1440 minutes). Figure 6 illustrates the evolution of bus 
voltage magnitudes and Q2 for this load scenario. It can be 
seen that Q2 is set on its upper bound 0.9 pu along the 
more stressed period observed. Also, V1 and V2 also do not 
exceed their upper bounds. 

Figure 7 shows the numerical impact of the required 
accuracy on the solution of LMBF method. The results are 
illustrated for experiments based on scenario S10. We 
conclude that for the same power samples, higher values of 
LGP will require more iterations.  

As an alternative procedure, instead of fixing the LGP 
and counting the number of iterations required for each 
power sample, the number of iterations is fixed a priori, and 
the value evolution of || L(x,λ,s,π)||∞ is observed. Figure 8 
presents the results for the scenario S10 for three numbers 
of iterations (10, 40 and 300 iterations). It can be seen that 
along the period of higher value of power demands more 
iterations are required than in situations where the system 
is lesser stressed. This confirmation is verified even for the 
case when 300 iterations are set. Values of || L(x,λ,s,π)||∞ 
for 300 iterations are almost the same one obtained for 40 
iterations along the more stressed period.  
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Fig.5. Daily power demand for the scenario S10 [8] 
 

 
Fig.6. Voltage magnitudes and Q2 values for the scenario S10 
 

 
Fig.7. Iteration counts evolution on test 10, for different LGP 
 

 
Fig.8. Index || L||∞ evolution for the scenario S10 considering fixed 
iteration number (10, 40 and 300 iterations) 
 

After performing all experiments, a conservative value 
for the upper limit of iterations (MaxIt), in Algorithm 1, could 
be established as the maximum number of iterations 
required for the most stressful experiment, for a given LGP. 
For example, for LGP 10-4, scenario S6 has been 
characterized as that one which required the highest 
number of iterations. Then, according to this aspect it would 
be reasonable to set MaxIt =1153 for future experiments 
with the same electrical system. In addition, considering the 
worst case of time demand in Table 1 (1×10-3 s), it can be 

assumed that real-time applications can properly operate 
within time window of (1153)×(1×10-3)=1.153 second. 

For all experiments, it has been verified that the step 9 
in Algorithm 1 is the one that demands the highest 
computational cost. The burden is due to the solution of the 
linear system W×∆d = - L(x,λ,s,π). Then, for large-scale 
system, the use of newly developed techniques, such as 
presented in [9], could significantly reduce processing time 
in the problem. However, the study and details involving this 
kind of system is out of the scope of the present paper and 
is objective of another publication. 
 
Conclusions 

This paper presented an application of the LMBF 
method to solve the optimal reactive power flow problem 
when power demand changes in time.  

A set of computational tests were conducted on a three-
bus electrical system to evaluate the performance of the 
proposed methodology, under different voltage and reactive 
power injection operational conditions and bounds. 

In all experiments, the LMBF successfully reached the 
optimal solutions, although it may have required more 
iterations for higher precisions, narrower bounds and more 
stressful power demands. A proper set of parameters can 
turn this application suitable for real-time operations and 
monitoring. 

In future works, we intend to evaluate the methodology 
for large scale systems and also include other load models, 
such as proper modelling of induction motors [6]. 
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