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Responses of standard and fractional linear systems and
electrical circuits with derivatives of their inputs

Abstract. The responses of continuous-time and discrete-time linear systems with derivatives of their inputs are addressed. It is shown that the
formulae for state vectors and outputs are also valid for their derivatives if the inputs and outputs and their derivatives of suitable order are zero for
t = 0. Similar results are also shown for the discrete-time linear systems and for the fractional continuous-time and discrete-time linear systems.

Streszczenie. W artykule rozpatrywane sg ciggte ukfady i obwody elektryczne liniowe oraz dyskretne uktady liniowe z pochodnymi (i odpowiednio
réznicami) wymuszen. Pokazano, ze wzory okre$lajace pochodne wyjscia uktadow i wektoréw stanu sg rowniez prawdziwe dla ich pochodnych jezeli
odpowiednie warunki poczatkowe i ich pochodnych sg zerowe. Analogiczne wyniki zostaty rowniez wyprowadzone dla uktadéw dyskretnych rzedéw
catkowitych i niecatkowitych. (Odpowiedzi uktadéw i obwodéw elektrycznych liniowych rzedéw catkowitych i nie catkowitych z pochodnymi
wymuszen).

Keywords: linear system, fractional, response formula for derivative.
Stowa kluczowe: uktady liniowe, rzad niecatkowity, odpowiedz uktadu.

Introduction

Derivation of the response formulae for linear systemsis (1) y(t) = j gt—o)u(r)dr.
a classical problem of linear systems theory and it has been
addressed in many books and papers [1-4, 6, 11-13].
Mathematical fundamentals of fractional calculus and its
some applications are given in the monographs [7-10].
Some problems of fractional systems theory and its
applications have been considered in [3, 5, 9].

In this paper the following problem is addressed. Under
which conditions the well-known formulae for the solutions y(t) du(t)
of the state equations and their outputs are also valid for where Y(t) = dt and U(t)=—n-= dt
derivatives of their inputs for standard and fractional
continuous-time and disc?rete-time linear systems. We will prove that (1) implies (2) if and only if u(0) =0 and

The paper is organized as follows. In section 2 the y(0)=0.
problem is analyzed for standard continuous-time linear
systems and in section 3 for the standard discrete-time
linear systems. An extension of these considerations to  implies y(0)=0. Multiplying the equality Y (s)=G(s)U(S)
fractional continuous-time linear systems is given in section L _ B
4 and to the fractional discrete-time linear systems in by s and taking into account that u(0)=0 and y(0)=0

The following problem arises. Under which conditions the
following equality also holds for the system

t
@ = j g(t-)u(r)dr,

By assumption the initial conditions are zero and u(0)=0

section 5. Concluding remarks are presented in section 6. we have
The following notation will be used: R - the set of real  (3) sY(s) = y(0) = G(s)[sU(s) —u(0)].
numbers, R™™ - the set of Nxm real matrices and ApPPplying the inverse Laplace transform to (3) we obtain (2)

since

L[y(t)]=sY(s)—y(0) and £[u(t)]=sU(s)—u(0).
In general case we have the following theorem.
Theorem 1. The equality (1) implies

R"=R™, Z, - the set of nonnegative integers, |, - the
nxn identity matrix.

Continuous-time linear systems
Consider the continuous-time linear system shown in

t
5 @Dty=|gt-u?@)dr, q=1,.2,..
Fig. 1 with the impulse response matrix g(t):L'l[G(s)], ©) ym '([g( ez,

T « - if and only if

G(s)=£[gMt)]= | g(t)e™dt, where G(s)eR"™(s) is

0 u(k)(o) d d?(t) =0, (k)(o) d di/(t) =0,

the transfer matrix, ' is the inverse Laplace transform and t=0 t=0
k=12,...

RPM(s) is the set of pxm rational matrices in s. . .
Proof. Applying Laplace transform and the convolution

theorem to (5) we obtain

u(t) —— v(i) q
— g — Ly m1=5Y(s)- > s4IyUD0) = G(s)cu @t
Ues)! ¥is) [y (] (s) ; y(0) =G(s)LuT (D]
Fig. 1. Continuous-time linear system 7)

q S
=G(9)[sU(s)- Y sl (0)].
The output y(t)eRP of the system for the input j=1

u(t) e R™ and zero initial conditions x(0) =0 is given by For zero initial conditions we have
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(8) sAY (s) = G(s)sU(s) =sIG(s)U (s)

and (5) holds if and only if the conditions (6) are satisfied. o
Example 1. Consider the electrical circuit shown in Fig. 2
with given resistance R, capacitance C, and source voltage

u(t).
i() R

—

u(t) [ ‘ ‘”(‘(U

Fig. 2. Electrical circuit

Using Kirchhoff's law and Laplace transform to the electrical
circuit we obtain

9) U(s)=sRCU(s)+Uc(s) for uc(0)=0,
where U(s) = L[u(t)], U (s) = L[uc (D)].
From (9) we have
-t
Ue)=o® L _ 1 yg)gerc |,
RC 1 RC
S+——
RC

Using the convolution theorem and

transform to (10) we obtain
t (t-7)

(11) uc(t):EE‘;e RC u(r)dr

(10)

inverse Laplace

and
t (t-7)
(12) uc(t):E'([e RC (j(7)d7 for u(0)=0.

Note that for

(13) u(t) =U sint
u(0) =0, but for
(14) u(t) =U cost
u(0)=U =0.
Using (12) for (13) we obtain
t-z
(15) i(t):szgje(Rc)coswr.
dt R 0

Consider the linear continuous-time system described by
the state equations

(16) X=Ax+Bu,

17) y =Cx+Du,

where x=x(t)eR", u=ut)eR™, y=y(t)eRP are the

state, input and output vectors, respectively and Ae RN
BeR™™, CeRP", DeRP™.

The solution to the equation (16) for zero initial conditions
X(0) = X, =0 has the form
(18) x(t):jeA(t_’)Bu(r)dr.
Substitution of (28) into (17) yields
(19)  y(t)= cjeA(t*”Bu(r)dr +Du(t).
0

Theorem 2. The equalities (18) and (19) imply, respectively

t
20)  xO(t)= jeA“*T)Bu(q)(r)dr L q=12,...
0
and
t
@1) yO(t) = CIeA(t")Bu(Q)(r)dr +Du@t), g=1.2....
0

if and only if the condition (6) is satisfied.
Proof. Proof is similar to the proof of Theorem 1.

Discrete-time linear systems
Consider the discrete-time linear system shown in Fig. 3

with given the impulse response matrix g(i):Z_l[G(z)],

G(2)=Z[g(D)]= Z g(i)z™", where G(z) e RP*™(2) is the
i=0

transfer matrix of the discrete-time system and RP*™(z) is

the set of pxm rational matrices in z.

u(i) — V(1)
Utz) Y(z)

Fig. 3. Discrete-time linear system

The output y(i) € RP of the system for the input u(i) e R"™
and zero initial conditions X(0) =0 is given by

1
22)  y@) =Y gl-ju(j).
j=0
The following problem arises. Under which conditions the
following equality holds

1

AY(i) =Y g(i- HAu(j),

j=0
where Ay(i) = y(i+1)—y(i) and Au(j)=u(j+1D—-u(j).
We will prove that (22) implies (23) if and only if
u(0) = 0 and y(0)=0.
By assumption the initial conditions are zero and u(0)=0.
Multiplying the equality Y(z)=G(z)U(z) by (z-1) and
taking into account that y(0)=G(z)u(0) =0 for u(0)=0 we
obtain

(23)

(24)  (2-DY(2)-2zy(0) = G(9)[(z-DU(2) - zu(0)] .
Applying the inverse Z-transform to (24) we obtain (23)
since

25)  Z[AY(D]=(z-1)Y(2)-2zy(0) and

Z[Au()]=(z-=DU (2) —zu(0).
In general case we have the following theorem.
Theorem 3. The equality (22) implies

AVy(i) = iq(i - DA%u(j), g=1.2,..

(25)
j=0
if and only if
k
AOY0) = (-1 "Lu k—j)=0,
(0) %( TS TR )
@) 890 =3 — k=)=
N R U TR

for k=1,2,....,q-1
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or
(27) u(i)=0, y@i)=0 for i =0,L,...,q-1.
Proof. Proof is similar to the proof of Theorem 1.

Consider the linear discrete-time system described by the
state equations

(28) X(i+1) = Ax(i) + Bu(i),
(29) y(i) = Cx(i) + Du(i),
where x(i)eR", u(i)eR™,
state, input and output vectors, respectively and Ae RN

BeR™™, CeRP", DeRP™.
The solution to the equation (28) for zero initial conditions
X(0) =0 has the form

icZ, =10}

y(i)eRP, iez, are the

i—1
x(i)=> A" Bu(j), ieZz
j=0
Substitution of (30) |nto (29) yields
y(i) = CZA' I-1Bu(j)+ Du(i),

j=0
Theorem 4. The equalltles (30) and (31) imply, respectively

(30)
(31)

(32) AWx(i) = ZA' FIBA®y(j), ez, , q=12,..
j=0
and

i_l . .
(33) AVy(i)=CY ATITBADu(j)+ DAVu(i), g=12....
i=0
if and only if the condition (26) is satisfied.
Proof. Proof is similar to the proof of Theorem 3.
Example 2. Given the discrete-time linear system (28), (29)
with the matrices

A= 01 5| C=[0 1], D
oon o oo ne
input

(35)  u(i)=2(1-e™

and zero initial conditions.
The transfer function of the system is equal to

G(z)=C[lz—A]'B+D =[0 1]{Z _I}H
Bt - 6 z+5[0

(36)
6
22 +52+6
and
(37)g(i) = 2 [G(2)] = z'{%} =-3(=2)' +2(-3)".
2°+5z2+6

Using (22) and (37) we obtain
(38) y(i)=> gl — Pu(j) =) 32T +2(-3)11-201-e7).
j=0 j=0

Note that (35) satisfies the condition u(0)=0, but

ul)=2(1 —e‘l) # (0. Therefore, the equalities (32) and (33)

are satisfied only for =1 but are not satisfied for

g=2,3,...From (33) and (38) for g =1 we have
Ay(i) =3 9(i - Hau(j)

(39) .
=Y =32 +2(=3)" ] 2e T (1-e).

j=0

Fractional continuous-time linear systems

In this section the following Caputo definition of the
fractional derivative will be used [3, 6-9]
t

a (n)
OD{’f(t):d f(t): 1 J- f (rl)
dta l"(l_a) 0 (t _T)Ot+ -n
n-l<a<neN ={,2,...},
where a € R is the order of the derivative,

(40)

@) @)= df(”

and

42)  T(x)= je‘tts‘ldt
0

is the Euler gamma function.
Consider the fractional continuous-time linear system
a

(43) ;=Ax+Bu,O<a<1

(44)
where x=X(t)eR", u=u(t)eR",

y=Cx+Du,
y=Yy(t)eRP are the

state, input and output vectors, respectively and Ae R™",

BeR™™, CeRP", DeRP™.
Applying the Laplace transform to (43), (44) and taking into
account that

(45) L{da }—s X (s)—s*7'x(0),
dt”

X (s) = £[x(t)] = j x(he Sdt, 0<a <1
0
for zero initial conditions Xx(0) =0, we obtain
(47) X(s)=[l,s% - AI'BU(s), U(s) = £[u(t)] .
Taking into account that [3]

(46)

(48) [Instl _ A]71 — zAksf(k+l)a’
k=0

we obtain

(49)  X(s)= Y A's®DeBU(s).

Using the inverse Laplace transform and the convolution
theorem to (49) we obtain [3]

t
(50)  x(t) = fcb(t ~7)Bu(r)dr,
0
where
Akt(k+1)al
6N em= Z Tk +De]

Substitution of (50) into (44)

t
(52)  y(t)=C j ®(t—7)Bu(r)dz + Du(t).

0
Theorem 5. The equalities (50) and (52) imply, respectively

B
(53) d xﬂ(t)

t
=jq>(t—r)Buﬂ(r)dr
0

and
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y/j t
(54) a7y® y(t):CIQ(t—r)Buﬂ(r)dr+ Du?(t)
dt” g

if and only if u(0)=0, y(0)=0.
Proof. Multiplying (49) by s”? we obtain

(55)s” X (5)-s""'x(0) = Y| A“s" B[/ U (5) - s/ u(0)]
k=0

since by assumption x(0) =0 and u(0)=0.

Applying the inverse Laplace transform to (55) we obtain

(53) if and only if u(0)= 0. Proof of (54) is similar. o

Fractional discrete-time linear systems
Consider the fractional discrete-time linear system

(56) A*x(i+1)=Ax(@i)+Bu(i), ieZ, ={0],..}
(57) y(i) =Cx(i) + Du(i),
where x(i)eR", u(i)eR™,
state, input and output vectors, respectively,

BeR™™, CeRP", DeR™M
difference of the order « is defined by

yi)eRP, iez,
Aemnxn’

and the fractional

are the

(58) A*x(i) = IZ(—l)j(OjCJX(i -,
)
a 1 _ for j=0
(59) (j]: ala—1)..(a-j+1) for j=12...

j!
Substituting (58) into (56) we obtain
i+1

(60) x(i +1) = A, x(i) + Z(—l)i“(ﬂx(i — j+1)+Bu(),
j=2

where
(61) A, =A+1a.
The solution of the equatlon (60) has the form [3]

62)  x(i)= q>(|)x(0)+2cp(|— j+DBu(j),
j=0
where
j+1
63)  @(j+1)=A,D(j)+ Z(—l)k“(i}bu —k+1),
k=2

o0)=1,
Substitution of (62) into (57) ylelds

y(i) = CO(i)x(0) + ZC(D(I— j+1Bu(j)+Du().
j=0

Theorem 6. The equalities (62) and (64) for zero initial

condition x(0) =0 imply, respectively

(64)

i—1
(65)  Ax(i)= Y ®(i-j+DBAU(j), ieZ
j=0
and
i—1
(66)  Ay(i)= Y Cd(i— j+DBAu(j)+DAu(i), ieZ

j=0
if and only if u(0)=0, y(0)=0.
Proof. Using (62) for x(0) =0 we obtain

i
AX(i) = x(i +1) = x(i) = > _@(i - j)Bu(j)
=0
(67) i-1 i1
=D @i - j+DBu(j) =Y ®(i- j+DBAu(j)
=0 j=0
if and only if U(0) = 0. The proof of (66) is similar. o
The considerations can be easily extended to higher order
difference.
Theorem 7. The equalities (62) and (64) for zero initial
conditions X(0) =0 imply

i—1
A*x(i) = Y (i - j + DBA"(j).

(68)
j=0
ieZ,, O<a<l
and
i—1
(69)  A%y(i)= Y Cd(i - j+1)BA%u(j)+DAu(i),
j=0
ieZ,, O<a<l

if and only if u(0)=0, y(0)=0.
Proof. Using the z-transform to (58) for zero initial
conditions and the convolution theorem we obtain

ZA“x(l)z"

i=0

(70)
—Z{Z( 1)( )xa—n] =(1-27)"X(2)

i=0| j=0
where X(z)=Z[x(i)].

The z- transform to (56) and (57) for zero initial conditions
yields

ZIN*x()] =

7)) X@=[,0-27")*-AI"'BU(2)
and
(72) Y@ ={C[l,(1-zH*—AT'B+DU(2),

where U (z) = Z[u(i)] .

Multiplying (71) and (72) by (l—z’l)“ and using the
inverse zet transform and the convolution theorem we
obtain (68) and (69), respectively. o

Concluding remarks

The responses of continuous-time and discrete-time
linear systems with derivatives of their inputs have been
addressed. It has been shown that the formulae for state
vectors and outputs are also valid for their derivatives if the
inputs and outputs and their derivatives of suitable order are
zero for t =0 (Theorem 1). Similar results are also valid for
discrete-time linear systems (Theorem 3) and fractional
linear systems (Theorem 5 and Theorem 6). The
considerations have been illustrated by examples of
continuous-time and discrete-time linear systems. The
considerations can be extended to fractional positive linear
systems.
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