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Fast ray casting of function-based surfaces 
 

Abstract. This paper deals with the fast ray casting of high-quality images, a method of defining free forms without approximating them with 
polygons or patches, issues of using perturbation functions for animation of the surfaces of 3D objects. A method for visualizing functionally defined 
objects adapted for graphics processing units (GPU) is proposed. 
 
Streszczenie. W artykule zaprezentowano metodę rzutowania promieni wykorzystującą tzw. funkcję perturbacji zamiast aproksymacji za pomocą 
wieloboków w odniesieniu do obrazów wysokiej rozdzielczości w celu animacji powierzchni obiektów trójwymiarowych. Ponadto, zaproponowana 
została metoda wizualizacji obiektów z wykorzystaniem procesorów graficznych (GPU). (Szybkie rzutowanie powierzchni opisanych za pomocą 
funkcji). 
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Introduction 
In the generation of 3D scenes, a polygonal definition of 

object models is most frequently used which has a number 
of limitations. Wireframe models of 3D objects are 
approximate. Increasing the realism of graphic scenes 
involves increasing the level of detail for correct 
approximation of the surfaces of objects of the real world, 
with the rates of increase in the geometric complexity of 3D 
images exceeding the growth rate of the performance of 
graphics tools. Achieving photorealism usually requires 
more than one million polygons in the scene and a trend to 
further increase in the level of detail is observed. The 
amounts of data for visualization of three-dimensional 
objects with complex surface are close to voxel models. 
Polygonal models are in principle unsuitable for obtaining 
many visual effects necessary for a realistic displaying of 
scenes. Skeletal animation cannot provide high-quality 
animation of flexible materials or 3D metamorphosis or 
morphing of objects. 

These drawbacks can be eliminated by means of 
analytical definition of objects and their rasterization using 
ray tracing algorithms. The functional representation 
describes most accurately the object geometry and has the 
smallest size of the required data. Procedures of functional 
representation demonstrate compact and flexible 
representation of surfaces and objects that are the results 
of logical operations on volumes. Its disadvantage is 
complicated geometrical processing and visualization in 
real-time. 

The paper describes free forms based on the 
perturbation functions. It is shown that an adequate surface 
smoothness and a compact object description can be 
achieved using a limited number of base and perturbation 
functions. The aim of this work is to develop a method for 
visualizing functionally defined objects based on 
perturbation functions using graphics processing units. 

 
The previous works 

One of the main disadvantages of the known 
visualization methods is complexity of the calculation of 
points on the surface. Thus, the ray marching method does 
not guarantee detecting the surface, and, in addition, it is 
comparatively slow [1, 2, 3]. The method of determining the 
intersection of a ray with an implicitly defined surface is too 
complex to calculate the L- and G-parameters [4].  

In the tracing method, finding the maximum radius when 
no point of the volume lies within the sphere is a nontrivial 
task [5]. Ray tracing with analysis of the interval for complex 

functions requires individual calculations for each ray and 
each interval along this ray [6]. In fast tracing, search for the 
rays intersecting the surface requires a lot of calculations 
and is not efficient enough as the clustering procedures of 
this method do not solve this problem completely [7]. A ray 
tracing method for imaging surfaces defined by algebraic 
polynomials of high degree is described in [8]. However, it is 
not easy to model real objects using polynomials. Nor is the 
accuracy of approximation of the initial function with a 
Bezier curve is guaranteed. Another disadvantage of this 
method is that transformation of objects to another 
coordinate system is a complex task. Therefore, the 
creation of dynamic scenes is problematic.  

There is another technique for the visualization of 
analytically defined objects using GPU [9], which is based 
on conventional single-step tracing of rays. The highly 
parallel structure of a GPU makes them more effective than 
general-purpose CPUs for algorithms where processing of 
large blocks of data is done in parallel GPUs are done in 
parallel [10]. A distinctive feature of this method is that the 
step size is not constant but is chosen in each iteration 
where the radius of the sphere centred at the current point 
on the ray is determined. A disadvantage of the method is 
that finding a suitable radius is a difficult task. For static 
scenes, the authors of the algorithm preprocessed data. 
Therefore, as in the previous method, visualization of 
objects that change their shape and position in time 
requires a significant computational cost.  

 
3D Models 

Functionally defined objects are constructed from 
second-order surfaces with analytical perturbation 
functions, which ensure reaching a high coefficient of 
geometric compression of highly realistic three-dimensional 
objects. It is proposed to describe geometric objects (free 
forms) by defining the function of deviation (of the second 
order) from the basic surface of the second order (quadrics) 
[11]. 

The function is defined by a second-order algebraic 
inequality with three unknowns x, y, z in the form F(X) ≥ 0. 
The surfaces are considered as closed subsets of the 
Euclidean space E³, which are defined by the describing 
function F(X) ≥ 0, where F is a continuous real function and 
X = (x, y, z) is a point defined by coordinate variables in the 
space E³. The expression F(X) > 0 defines the points inside 
the surface, F(X) = 0 defines the points on the boundary, 
and F(X) < 0 defines the points located outside and not 
belonging to the surface. 
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Free forms are constructed on the basis of quadrics. A 
free form is a composition of the basic quadrics and 
perturbations: 

 (1)       



N

i
ii zyxRfzyxFzyxF

1

,,,,,, 	

where fi is the form-factor; the perturbation function R(x, y, z) 
is found as follows 
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where Q(x, y, z) is the perturbing quadric. 

In order to make the surface smooth, the degree should 
be higher than two (2). This condition ensures the continuity 
of the function and its derivative. The obtained surfaces are 
smooth, and creation of complex surface forms requires few 
perturbation functions. 

The proposed method of describing objects of 3D 
scenes by basic surfaces and functions has a compact 
presentation, which allows one to reduce the volume of data 
transfer by a factor of 10 to 1000, depending on particular 
three-dimensional scenes and models. Objects with flat 
faces can be also defined fairly easily, e.g., a cube can be 
defined by three quadrics. Moreover, in solving the 
describing function in the form of the inequality F(X) ≥ 0, it is 
possible to visualize not only the surface, but also the 
internal structure of the object.  

Two major types of elements of the set of geometric 
objects are simple geometric objects and complex 
geometric objects. A complex geometric object is a result of 
operations on simple geometric objects [9]. Let the objects 
G1 and G2 be defined as f1(X)  0 and f2(X)  0. The binary 
operation of the objects G1 and G2 means operation 
G3=¡(G1, G2) with the definition 

(3)  
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where  is the continuous real function of two variables. 
 

Fast ray casting 
In the algorithms of rendering by recursive subdivision of 

an arbitrary-dimension space, the most important question 
is about intersection of an object defined as F(X)  0, with a 
division cell (a square, a bar neighborhood B(P, )={Xi|Xi-
P|}). 

It is clear that the exact solution of this problem (the 
system of inequalities) is possible only for rather simple 
functions f(x, y, z). Even for a function expandable into 
polynomials in B(P, ) to the n-th degree the exact solution 
is unsuitable because it will involve roots to the n-th degree. 

However, the exact solution for our application. It is 
necessary is not needed and sufficient to answer the 
question whether there are contour points in the vicinity 
because the complete overlapping or the absence of object 
intersection by a cell is solved by simple inequalities. It is 
noteworthy that the approximate solution should take into 
account the case of potential intersection and be 
asymptotically accurate. 

Thus, we will give another formulation of the problem as 
a definition of the set of points belonging to B(0, ) and at 
the same time satisfying the equation f(x, y, z) = 0. 

The set of points B(P, ) = {X:dist(X, P)  } is called a -
neighborhood of the point P in the metric space. Further 
considerations are concerned with the case of 3-D space 
because this is precisely the case of our interest, and the 
Manhattan metric dist(X, Y) = max{|X|, |Y|}, although these 
results are valid also for an arbitrary dimension and metric. 

Let f(x,y,z) be an analytical function in a three-
dimensional space. Then in B((0,0,0), ), it can be expanded 

into the Taylor series. Discarding terms with degree higher 
than some d, yields: 
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Write expression (4) in the form: 
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Here we assume that the following condition is fulfilled: 
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because in the other side the contour involves the origin of 
coordinates, i.e., the trivial case. 

Let us consider the inequality of triangle: 
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and the function: f i(x, y, z) 
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where: 
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Thus, writing the test in the practically suitable form we 
have the following inequality (if it is true, then f(x, y, z) has 
zeros in B((0,0,0), ): 
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Since the vicinity is usually a unit vicinity, B((0,0,0), =1), 
the formula is reduced to comparison of the modulus of the 
free term of the equation of the figure (a line or a surface) 
with the sum of modules of the rest of coefficients. 

The main point at this stage is the efficient finding of the 
first intersection of the ray with the surface. This task is 
similar to visualization in volumetric tomography, where the 
density function is defined in the form of discrete data. In 
our case, we use an analytically defined density function, 
which allows a more efficient search for points on the 
surface. It is proposed to calculate the intersection of rays 
with the surfaces of three-dimensional objects using a 
method which does not have the above disadvantages 
characteristic of the previously discussed well-known 
methods of analytical definition of surfaces. For ease of 
understanding, we assume that the scene is in a unit three-
dimensional cube. Perspective is not analyzed due to the 
fact that it reduces to transformation to another coordinate 
system. Therefore, we omit the initial transformations and 
pay more attention to the main part of the method. We 
assume that the observer looks along the Z axis (Fig. 1). 

It is necessary to get the projection of the scene on the 
plane XY. The projection must represent a finite set of 
values. Rays pass through the plane of the cube XY, and 
each of them corresponds to a pixel on the image. The rays 
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are limited by the front and rear faces of the cube. In the 
search for the points of intersection of the ray and the 
surface, each ray is divided along the Z axis to form a set of 
voxels. Thus, we obtain a density function along the ray, 
which depends on one variable. The task is to find the first 
point at which the function vanishes. Having determined this 
point for each ray, we can calculate the coordinate Z. Next, 
a normal is defined at each pixel. In the presence of all the 
coordinates and normal at each pixel, the local illumination 
model is used. The result is an image of a smooth object 
neglecting illumination.  

 
Fig.1. Ray casting 
 

Implementation and performance 
The visualization time is reduced by using the 

computational resources of a graphics processing unit with 
compute unified device architecture applied (CUDA) 
(NVIDIA). The CUDA system is a parallel programming 
model that allows implementing programs in C on a 
standard graphics processing unit. The result of running the 
programs on different processing units is the same even if 
they may have a different number of streaming 
multiprocessors. A large number of computer processors 
allow parallel check of the intersection of several rays with 
the object simultaneously. Most of the graphics processing 
units that support CUDA have not less than 128 scalar 
cores. Therefore, a fairly large portion of the cube will be 
computed in parallel. The architecture of graphics 
processing units is based on many streaming 
multiprocessors with shared memory access for reading 
and writing. Each of the streaming processors contains 
eight scalar cores and a set of on-chip memory of four 
types. The number of registers may be 8192 or 16384, 
depending on the computational capabilities of the 
processing unit. The shared memory is 16 KB for each 
multiprocessor. 

The constant memory cache (8 KB for each 
multiprocessor) and the texture memory cache (6 to 8 KB 
for each multiprocessor) were used only for reading. In the 
implementation of the proposed method, the effect of the 
speed of processors with memory on the performance was 
taken into account. The registers and shared memory were 
used to the maximum extent. In all other cases, the total 
memory of the graphic processing unit was used. 
 Among the functions of the graphics processing unit was 
to calculate the coordinates of points of the surfaces, 
normal, and illumination. Geometric transformations were 
performed by the central processing unit (CPU). The 
DirectX application-programming interface was used for 
visualization. Testing was performed on Intel Core2 CPU 
E8400 3.0 GHz, GPU and 9800 GT 470 GTX processors. 
Figures 2, 3 and 4 show the comparative results of testing 
of the dependence of the per-frame computation time on 

the number of defined perturbation functions for a particular 
test. 

 
 

Fig.2. Timing diagram: the number of frames per second for 
different tests 

 
 

Fig.3. Timing diagram: the average time frame for different tests 

 
 

Fig.4. Timing diagram: the acceleration relative to the E8400 for 
different tests 
 
Conlusions 

The method of defining three-dimensional objects and 
the visualization method proposed in this paper have 
advantages over the existing approaches. The main 
advantages include: ease of calculation of points on the 
surface with quick search and rejection of the regions not 
occupied by the scene objects; a factor of 100 or more 
decrease in the number of surfaces for describing curved 
objects; ease of animation and surface deformation. 

Functional definition of objects is especially important in 
a number of computer graphics problems: in modeling soft 
or organic objects, 3D morphing, detection of collision of 
objects and constructive block geometry. The areas of 
application of functionally defined objects are molecular 
biology, interactive graphic visualization systems, CAD 
systems, 3D simulation systems, 3D web visualization, 
prototyping system, etc. 
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