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The synthesis of optimum current obtained by mathematical 
models for an electrically propelled truck drive electromotor  

 
 

Abstract. This paper synthesizes the models of the current to be applied to the armature of a drive direct-current series electric motor used within an 
electric drive system of an electrically propelled truck, such models being optimal in terms of battery power expenditure minimization. The paper 
offers a parameter identification method for the synthesized models to be used either for a loaded truck or for an empty one, either for a horizontal 
run or for a downhill/uphill run. 
 
Streszczenie. W artykule przedstawiony został sposób modelowania prądu płynącego przez obwód silnika, stosowany w układzie napędowym 
wózka pojazdu ciężarowego. Przedstawiony został dobór modelu optymalnego z punktu widzenia minimalizacji wymaganego nakładu energii 
akumulatora. W artykule zawarto również metodę identyfikacji parametrów dla przedstawionych modeli, w tym przeznaczone zarówno dla pustego 
jak i obciążonego wózka pojazdu, jadącego po powierzchni płaskiej i pochylonej. (Synteza optymalnego prądu silnika elektrycznego wózka 
pojazdu ciężarowego za pomocą modeli matematycznych).  
 
Keywords: mathematical model, truck, electric drive, DC electric motor, battery, power expenditure minimization. 
Słowa kluczowe: model matematyczny, pojazd ciężarowy, napęd elektryczny, silnik prądu stałego, akumulator, minimalizacja wydatku 
energii. 
 
 
Introduction 

Every day witnesses an increased number of 
electrically-propelled battery-powered vehicles on the roads 
in many countries. So far, these are the cars driven mostly 
by AC electric motors where the battery DC power is 
converted into AC power applicable to an asynchronous 
electric motor. However, as is known from any electric drive 
theory textbook, e.g. [1, 2], the speed-torque curve of an 
asynchronous electromotor (which is a relationship 

( )f T  , where   is the speed of the electromotor shaft, 

and T  is the shaft tractive effort torque of such motor) 
looks as shown in Fig. 1 below. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Asynchronous electromotor speed-torque curve 

 

It is clear from Fig. 1 that as soon as the load torque sT  

applied to an asynchronous electromotor shaft rises to its 
tractive effort torque critical value kT , the electric motor 

behavior shifts over to an unstable segment of the speed-
torque curve between the points ( , )k kT  and zT , and, 

upon a further increase of the load torque, the motor’s 
tractive effort torque goes to the point zT , where the driving 

electric motor stops and where the vehicle driven by such 
electric motor has to stop, too. Meanwhile, it is noteworthy 
that a speed-torque curve of a synchronous AC electric 
motor differs from a speed-torque curve of an asynchronous 
electric motor, as shown in Fig. 1, only in the fact that its 
operating performance, which lies between the points 

0 0( , )T  and ( , )k kT  is a straight-line segment parallel to 

the torque axis [11]. 
Inasmuch as a car does not weigh much and the 

passengers inside and any luggage in the trunk are not so 
heavy, we can choose a right drive electric motor to avoid 
the situation where the load torque sT  exceeds the tractive 

effort torque critical value kT  even when a car runs uphill. 

Therefore, for a car, it is quite possible to use an AC 
asynchronous or synchronous electric motor as a propelling 
motor. 

However, due to a great weight of trucks and even a 
greater weight of the load they carry, when a truck goes 
uphill, the load torque sT  may surpass the electric motor’s 

tractive effort torque critical value kT  of the electric motor, if 

such motor is an AC electromotor. So, while selecting drive 
electric motors for trucks, preference is given to DC series 
electric motors, whose speed-torque curve, as is known [1, 
2], looks as shown in Fig. 2 below. 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. Speed-torque curve of a drive direct-current series electric 
motor 

 
It is clear from Fig. 2 that the speed-torque curve of a 

drive direct-current series electric motor is stable within the 
whole range of load torque potential values, so if such 
motor is used as a drive electric motor for a truck, there 
cannot be a case when the tractive effort torque becomes 
lower than the load torque value; hence such motor-driven 
truck will never stop even on a very steep rise of a road. 
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Since the longest distance coverable by an electrically-
propelled truck without recharging the battery depends, first 
and foremost, on the battery capacity and on the electric 
power consumption per kilometer of the run course, then, in 
view of the battery capacity limits set by the manufacturers 
of such batteries, the vital problem to be solved is to find out 
such rate of electric power consumption which would allow 
the truck to cover the longest distance possible. A solution 
to the problem starts with a synthesis of the mathematical 
models simulating the running process of a vehicle driven 
by a direct-current series electric motor; such models 
should be optimum in terms of minimized consumption of 
the battery power used to energize the electric drive system 
of an electrically propelled vehicle.  
 
Problem formulation for named units  

Let us start solving the problem with tying it up to the 
equation [3], known from the theory of mechanics academic 
course 

(1)  T S
dV

m F F
dt

   

( ) , ( ) , 0,1, 2,...j j j jV t V V t V j    , 

which describes, in the course of time t, the motion of a 
vehicle of the weight m  at the speed V  under the motor-

induced tractive effort TF  which has to overcome the 

resistance force SF , during the period of time iT  under the 

initial conditions that, at the start of such period of time, the 
said vehicle was moving at the speed jV  and acceleration 

jV  . 

As is known from the abovementioned theory of 
mechanics [3] and aerodynamics [4], the resistance force 

SF  consists of three components, among which the first 

component OF , which denotes the friction of the vehicle 

wheels against the road pavement, is proportional to the 
weight of the vehicle GF ; the second one 1F , which 

denotes the friction of the vehicle side surface against the 
air, is proportional to the vehicle speed; and the third one 

2F , which denotes the front air pressure on the vehicle 

cross-section, is proportional to the squared speed of the 
vehicle, i.e.  

(2)  
2

1 2 0 1 2S O GF F F F k F k V k V      , 

where the value of the coefficient 0k  is a tabular value, 

which depends on the material of the road surface; the 
value of the coefficient 1k  depends on the vehicle side 

surface area; and the value of the coefficient 2k  depends 

on the cross-sectional area of the vehicle. 
By inserting, for SF , the expression from (2) into (1), we 

derive the vehicle dynamic equation such as  

(3)  
2

0 1 2T G
dV

m F k F k V k V
dt

    , 

In case of this differential equation and further on, we 
will omit, for the sake of brevity, any boundary conditions, 
while remembering that such conditions are certainly 
required to achieve a specific solution to such equation. 

However, recalling that 

(4)  I
T

T
F

R
 , 

and taking into account that the expression for a drive 
direct-current series electric motor is as follows 

(5)  ( )I DT k I I , 

where Dk  is a coefficient derivable from the nameplate 

data of the electric motor in question, I  is the armature 
current of such electric motor, and ( )I  is the induction 

coil magnetic flux, which, according to the magnetization 
curve, is a function of the armature current [1, 2], so, taking 
into consideration the relations (4) and (5), we arrive at the 
dynamic equation (3) for a vehicle such as 

(6)  
2

0 1 2( )D
G

kdV
m I I k F k V k V
dt R

    , 

However, it is worth mentioning that the equation (6), as 
presented herein, describes the dynamics of a vehicle only 
on the way along a horizontal road. 

Yet, if a vehicle is moving downhill, as is shown in Fig. 
3a, or uphill, as is shown in Fig. 3b, then, the term ( 0 Gk F ) 

in the equation (6) should be substituted for the binominal 
( 0 cos sinG Gk F F   ) for the downhill motion, or for the 

binominal ( 0 cos sinG Gk F F   ) for the uphill motion, 

i.e. the expression becomes as follows: 

(7) 
 

2
0 1 2( ) cos sinD
G G

kdV
m I I k F F k V k V
dt R

       , 

– for the downhill motion, 
 

(8) 

 2
0 1 2( ) cos sinD
G G

kdV
m I I k F F k V k V
dt R

       , 

– for the uphill motion. 
Now, let us consider the criteria, whose values should 

be minimized to solve the problem of optimization. 
For the problem of optimization of the motion of a 

vehicle propelled by a drive direct-current series electric 
motor, the optimization criterion shall be a functional such 
as 

(9)  

0

,
It

IE UIdt  , 

which characterizes the quantity of the electrical power IE , 

spent within the run time It  by a vehicle propelled by a DC-

series-electromotor, the armature of which bears the current 

I  created by the voltage U  applied to its terminals. 
It is evident from the diagram, as shown in Fig. 4 (where 

BU  is the voltage of the battery B  with the internal 

resistance Br ) that the criterion (9) is easily reducible to the 

form such as formula (10) 
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Fig.3. Vector diagrams of forces created by the weight force of a vehicle moving downhill (a) and uphill (b) 
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Fig.4. The wiring diagram for connection of a drive DC series 
electric motor to the battery B  with the internal resistance 

Br  

Normally, while driving a vehicle, we are concerned not 
only about the amount of the electric power consumable 
over the run time It , but also about the distance S  

coverable within such time. Apparently, knowing the speed 
of the vehicle V , we can determine such distance using the 
functional: 

(11)  

0

It

S Vdt  , 

However, considering the functional (11), we thereby 
attribute our problem of optimization to the isoperimetric 
class of problems [5, 6], for we have to find out such law of 
the vehicle speed variation which would minimize the 
functional (10) on condition that the dynamics of the vehicle 
be describable by the relevant equation from the set (6)-(8), 
and the distance, covered by the vehicle, be set by the 
functional (11). 

 
Problem formulation for relative units  

In order to generalize the obtained results, it makes 
sense to switch over to the relative values, using the 
following basic value: for the propelling force TF , its value 

RF  in the rated duty mode; for the torque T  on the shaft, 

its rated value RT ; for the vehicle speed V , its rated value 

RV ; for the drive motor armature current I , its rated value 

RI ; for the drive motor magnetic flux ( )I , its value under 

the rated current ( )R RI  ; for the voltage U , applied 

to the drive motor terminals, the voltage BU  of the fully-

charged battery. Also, we will use the basic value 

derivatives such as: for the time t , the electromechanical 

time constant Mt , which relates to the basic values through 

the expression – 

(12)  R
M

R

mV
t

F
 , 

for the distance S , the value RS , which relates to the basic 

values through the expression – 

 (13)  R R MS V t , 

for the battery direct-current energy E , the value RE , 

which relates to the basic values through the expression – 

(14)  R B R ME U I t , 

Having taken into account the input basic values and the 
derivative basic values: 
– as a relative value equivalent to equation (6), we obtain 
the equation – 

(15)  2
0 1 2( )

d
i i f f f

d

   

    , 

where 

(16)  ,
R

V

V
 

M

t

t
  , 

(17)  ,
R

I
i
I


( )

( )
( )R

I
i

I




 , 

(18)  0
0 ,G M

R

k F t
f

mV
 1

1 ,Mk tf
m

 2
2

R Mk V t
f

m
 , 

(19)  ( )
1D R R M

R

k I I t

RmV


 , 

– as a relative value equivalent to the dynamic equation (7) 
of downhill motion, we obtain the equation – 

(20) 2
0 0 1 2( ) sin cos

d
i i f f f f

d

     


     , 

where, in addition to the above-defined variables and 
coefficients, we have one more coefficient 

(21) 
0

G M

R

F t
f

mV
  , 

– as a relative value equivalent to the dynamic equation (8) 
of uphill motion, we obtain the equation 
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(22) 2
0 0 1 2( ) sin cos

d
i i f f f f

d

     


     , 

– as a relative value equivalent to the optimization criterion 
(10), we obtain the criterion functional – 

(23)  

0

(1 )
i

e i id


   , 

where 

(24)  

R B R M

E E
e

E U I t
  , 

(25)  I
i

M

t

t
  , 

(26)  B R

B

r I

U
  , 

– as a relative value equivalent to the constraint (11), we 
obtain the criterion functional – 

(27)  

0

i

s d


   , 

where 

(28)  

R M

S
s
V t

 , 

To complete the formalization of the problem, which we 
are to solve using the variational method [5, 6], we have 
only to formalize, in the relative units, the magnetization 
curve ( )i , which, as shown in the work [7, 8], is best 

generated for the variational method by the model  

(29)  
2

2 2

1 1

, [0, ),
( )

, [ , ),

a i b i i i
i

a b i i i
 



   
  

, 

which is a combination of a straight line and part of 
parabola that come together when the argument value is i . 

It is quite clear that while deciding on the electric motors to 
be used for an electrically propelled truck, we should 
choose such motors which would function within the 
straight-line segment of the magnetization characteristic 
under full load and within the parabolic segment of the 
magnetization characteristic without load. 

Finally, for the equations (6), (7) and (8), we will specify 
the initial conditions, as mentioned above near the equation 
(1) only, in the relative units as follows: 

(30) 
( )

( ) , 0,1,2,...

( ) ( ) .

j
j j

R

M
j j j

R

V t
v v j

V

t
v V t v

V






  



    

, 

Now, we have got all formal relations in relative units, 
which are required to solve the problem of synthesis of 
vehicle optimum motion mathematical models.  

 
Synthesis of optimum current mathematical models for 
a truck drive electromotor 

At first, let us synthesize the optimum current 
mathematical model for a drive electric motor of a fully 
loaded truck running along a horizontal segment of a road. 

In this case, we will use the linear component in the 
equation (15) in order to achieve approximation of the 
magnetization curve ( )i  expressed in relative units and 

described by the expression (29). So, let us assume that 

(31)  1 1( )i a b i   , 

As far as the problem contains the constraint (27) in the 
form of a functional, i.e. this problem belongs to the 
isoperimetric class of problems, the Lagrange function 
adjusted for the criterion (23) and constraint (27) will be as 
follows:  

(32) 

    2
0( , , , ', ', ', ) 'L i s i s i i s             , 

   2 2
1 1 1 0 1 2' a i b i f f f                

and the system of Euler equations will be as follows 

(33)  
'

'

'

0 ,

0,

0 .

i i

s s

d
L L

d
d

L L
d
d

L L
d 







  

  

  

, 

Having the Lagrange function (32) inserted into the 
system of Euler equations (33), i.e. having taken all 
required partial and ordinary derivatives of 

( , , , , , , )L i s i s      with respect to , , , , , ,i s i s     , we will 

obtain the system of equations such as  

(34) 
1 1 1 1

0

1
0 1 1 2 1

1 2 ( ) 2 ( ) 0,

( )
0,

( )
( ) ( ) 2 ( ) 0.

i a b i

d

d
d

f f
d

    
 


       



         

  

         

 

The second equation of the system (34) implies that 

(35)  0 1( ) C    , 

where 1C  is the unknown constant. 

Let us rewrite the third equation of the system (34) as 

(36)  1
1 1 2 1

( )
( ) 2

d
f f C

d

    


      . 

Now, we will solve the differential equation (36) with 

respect to the undetermined multiplier  1  , while taking 

into account that the solution consists of two components, 
viz. a free component and a forced component 

(37)  1 1 1( ) ( ) ( )free forced       . 

The free component of the solution of the equation (26) 
will be as follows 

(38)  1 2( 2 )
1 2( ) f f
free С e        , 

where 2С  is the integration constant, and the forced 

component is –  

(39)  1
1

1 2

( )
2forced
С

f f
 


 

  
. 
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Having inserted the expressions (38) and (39) into the 
equation (37), we obtain 

(40) 1 2( 2 ) 1
1 2

1 2

( )
2

f f С
С e

f f
  


    

  
. 

Then, having inserted the expression (40) into the first 
equation of the system (34) and having solved this equation 
with respect to i , we will have  

(41) 

 
1 2

1 2

( 2 ) 1
1 2

1 2
1 2

( 2 ) 1
1 2

1 2

1
2

( , , , ).

2 2
2

f f

f f

С
a С e

f f
і i C C v

С
b С e

f f

 

 


 




   



   

 
        

 
         

 

It is the expression (41) which defines the current law 

 i   for the armature of a drive motor used for a loaded 

electric vehicle. Having implemented such law, we will 
minimize the expenditure of the battery energy e  for the 

linear speed     of the electric vehicle at a given moment 

of time. 
Having analyzed the expression (41), we can see that it 

does not structurally contain the parameter 0f  peculiar to a 

horizontal segment of a road, meaning that if the 
optimization problem is solved according to a similar 
procedure both with the use of the equation (20) for the 
motion of a vehicle downhill and with the use of the 
equation (22) for the motion of a vehicle uphill, while such 
equations contain a sinusoidal component and a 
cosinusoidal component for 0f , such components will be 

absent in the optimum current model, too. Therefore, the 
expression (41) will be true both for the downhill motion and 
for the uphill motion. As is shown below, such components 
influence only the numerical values of the constants 1 2,C C , 

definable with the use of the optimum current model 
parametric identification method (41), as offered below.  

Now, let us synthesize an optimum current 
mathematical model for an electric motor, which drives an 
empty vehicle running along a horizontal segment of a road. 
In this case, we will use the parabolic component in the 
equation (15) in order to achieve approximation of the 
magnetization curve ( )i  expressed in relative units and 

described by the expression (29). So, let us assume that 

(42)  2
2 2( )i a i b i    . 

In such a case, the Lagrange function will be as follows:  

(43)  2
0( , , , ', ', ', ) ( ' )L i s i s i i s             , 

  3 2 2
1 2 2 0 1 2( ' )a i b i f f f                

and the system of Euler equations will be, obviously the 
same as in the expression (33), discussed above. 

Having the Lagrange function (43) inserted into the 
system of Euler equations (33), i.e. having taken all 
required partial and ordinary derivatives of 

( , , , , , , )L i s i s      with respect to , , , , , ,i s i s     , we will 

obtain the system of equations such as  

(44) 
2

2 1 2 1

0

1
0 1 1 2 1

1 2 3 ( ) 2 ( ) 0,

( )
0,

( )
( ) ( ) 2 ( ) 0.

i a i b i

d

d
d

f f
d

    
 


       



           

  

         

 

As in the preceding case, using the second and the third 
equations of the system (44), we find the undetermined 
multipliers, 0 ( )   and 1( )  , respectively, which take the 

form, identical to that, as represented by the expressions 
(35) and (40). 

Then, having solved the first equation of the system (44) 
with respect to the current i , we obtain 

(45) 

     2
2 1 2 1 2 1

1,2 1,2 1 2
2 1

2 2 ( ) 2 2 ( ) 12
( , , , ),

6 ( )

b b a
і i C C v

a

       
 

 
           

 
 

 

where 1( )   should be replaced with the value thereof, as 

given by the expression (40), but we will refrain from doing 
so in order to preclude the expression (45) from 
overloading. 

It is the mathematical model (45), as adjusted for the 

expression (40), which defines the current law  i   for the 

armature of a drive electric motor used for an empty truck. 
Having implemented such model, we will minimize the 
expenditure of the battery energy e  for the linear speed 

    of the vehicle at a given moment of time.  

Having analyzed the expression (45), we can see that it 
does not structurally contain the parameter 0f  peculiar to a 

horizontal segment of a road, meaning that if the 
optimization problem is solved according to a similar 
procedure both with the use of the equation (20) for the 
motion of a vehicle downhill and with the use of the 
equation (22) for the motion of a vehicle uphill, while such 
equations contain a sinusoidal component and a 
cosinusoidal component for 0f , such components will be 

absent in the optimum current model, too. Therefore, the 
expression (45) holds true both for the downhill motion and 
for the uphill motion. As to the plus and minus signs in the 
expression (45), the plus is to be used to denote 
acceleration whereas the minus denotes deceleration. 

The mathematical models (41) and (45) contain the 
unknown constants, viz. 1C  and 2C ; so, to make such 

models fit for practical application, we have to define such 
constants, using the specified initial conditions (30), i.e. we 
have to perform a parametric identification of such models. 

 
Parametric identification of optimum current models 

In the process of parametric identification of the 
mathematical model (41), we need to define the two 
parameters, viz. 0C  and 1C . This implies that the method 

to be used for definition thereof should be based on the 
solution of a system of two equations where such 
parameters are unknowns. Therefore, the synthesis method 
for parametric identification of the mathematical model (41) 
actually boils down to setting up such equations and to 
developing an algorithm to solve them. 

We will set up one of the equations with the use of the 
electric circuit, as shown in Fig. 4. 

As is known form the electric drive theory [1, 2], the 
voltage balance in the electric power circuit, as shown in 
Fig.4, can be described as  

(46)  
B B A A

dI
U Ir Ir E L

dt    , 

where ,A Ar L  are active resistance and inductance, 

respectively, of the armature winding of a drive electric 
motor, and 
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(47)  ( )E k I   

is the rotational electromotive force, which is generated in 
the armature and is proportional to the product of the 
angular velocity of the armature rotation   times the 
magnetic flux, which, in turn, is a function of the armature 
current. 

Having divided the equation (5) by BU  and having 

performed some additional conversions, we obtain its 
counterpart in relative units – 

(48)

 
1 11 ( ) ( )

di di
i i v i i i v a b i

d d
        

 
          

where 

(49) ( )
, , R RA R R A

B B M B

k V Ir I I L

U U T U R
 

      

while the other parameters and variables have been found 
out before.  

By inserting the expression (41) into the equation (48), 
and then by inserting the initial conditions (30) into the 
result of the first substitution and having transposed all 
terms of the equation to one side, we obtain a functional 
equation of the two variables, 1 2,C C , such as  

(50) 1 1 2 1 1 1 2( , , , , , , , , , , , , ) 0j j jC C a b f f v v        

where all other parameters are known numbers. 
So, the equation (50) will one of those required by us to 

develop a parametric identification method for the 
mathematical model (41) of the optimum armature current 
for a drive electric motor of a loaded vehicle running along a 
horizontal segment of a road. 

To set up the other equation required, first, let us insert 
the expression (41) and then the initial conditions (30) into 
the dynamic equation (15) for a vehicle running along a 
horizontal span of a road. As a result of such substitution 
and re-grouping of the terms, we obtain another functional 
equation of the two variables, 1 2,C C , such as 

(51) 2 1 2 1 1 0 1 2( , , , , , , , , , , , , , ) 0j j jC C a b f f f v v        

Having solved the system of the nonlinear equations 
(50) and (51) with one of the approximation methods 
available in any computer software base, we arrive at the 

numerical values 1 2,C C   of the parameters 1 2,C C  of the 

mathematical model (41), thereby completing the 
implementation of the algorithm of the proposed method for 
parametric identification of the mathematical model (41). 

It is quite clear that the parametric identification 
algorithm for the mathematical model (45), which specifies 
the optimum armature current for a drive electric motor of 
an empty vehicle running along a horizontal segment of a 
road will differ from the above-said procedure only in the 
fact that, in deriving the functional equations (50) and (51), 
the expression (45) will be always inserted instead of the 
expression (41). 

As to the parametric identification algorithm for the 
mathematical models of the optimum armature current for a 
drive electric motor of a loaded or empty vehicle running 
downhill or uphill, in the course of deriving the second 
functional equation, which is to be adjusted for the 
sinusoidal or cosinusoidal component, the expressions (20) 
and (21) are to be used instead of the expression (15). 

Finally, it should be noted, that some fragments of this 
article were published in other works [9, 10] of the authors 
hereof. 

 
Conclusions 
1. This paper presents the solution to the optimization 

problem in terms of minimized consumption of the 
battery power by a loaded or empty vehicle propelled by 
DC series electric motors and running along a horizontal 
segment of a road or downhill/uphill.  

2. This paper includes synthesized the optimum current 
mathematical models for a drive direct-current series 
electric motor propelling an electrical vehicle, whether 
loaded or empty. 

3. The paper offers the parameter identification method for 
the synthesized mathematical models of the optimum 
armature current in a drive electric motor. 

4. It has been proven that implementation of the 
synthesized mathematical models will allow minimizing 
the battery energy consumption by a loaded or empty 
electric vehicle under any law of its speed variation. 
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