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Determinants of the matrices of solutions to the standard and
positive linear electrical circuits

Abstract. Determinants of the matrices of solutions to the standard and positive time-invariant and time-varying linear electrical circuits are
addressed. Necessary and sufficient conditions for the positivity and asymptotic stability of the linear time-varying electrical circuits are established. It
is shown that the determinants of the matrices of solutions to the standard and positive linear electrical circuits are nonzero and they decrease to
zero for time tending to infinity if the electrical circuit contains at least one resistance and tends to 1 if the electrical circuit does not contain
resistances. Determinants of the matrices of solutions of asymptotically stable electrical circuits tend to zero for time tending to infinity.

Streszczenie. Praca jest po$wiecona analizie wyznacznikbw macierzy rozwigzan standardowych i dodatnich obwoddéw elektrycznych o statych i
zmiennych w czasie parametrach. Podano warunki konieczne i wystarczajgce dodatnio$ci i stabilno$ci asymptotycznej obwodéw liniowych o
zmiennych w czasie parametrach. Wykazano, ze wyznaczniki macierzy rozwigzan standardowych i dodatnich obwodéw o statych i zmiennych w
czasie parametrach sg niezerowe | dgzg do zera dla czasu dgzgcego do nieskoriczono$ci, gdy obwdd elektryczny zawiera przynajmniej jedng
rezystancje i dgzy do 1, gdy obwdd nie zawiera rezystancji. Wyznaczniki macierzy rozwigzan stabilnych asymptotycznie obwodéw elektrycznych
dgzg do zera dla czasu dgzgcego do nieksoriczono$ci. (Wyznaczniki macierzy rozwigzan standardowych i dodatnich liniowych obwodoéw

elektrycznych)

Keywords: determinant of solution matrix, standard and positive, time-invariant and time-varying, electrical circuit, stability.
Stowa kluczowe: wyznacznik macierzy rozwigzan, standardowy i dodatni, o parametrach statych i zmiennych w czasie, obwdd

elektryczny, stabilnos¢.

Introduction

A dynamical system is called positive if its trajectory
starting from any nonnegative initial state remains forever in
the positive orthant for all nonnegative inputs. An overview
of the state of the art in positive systems theory is given in
the monographs [7, 15]. Variety of models having positive
behaviour can be found in engineering, economics, social
sciences, biology, medicine, etc.

The Lyapunov, Bohl and Perron exponents and stability
of time-varying discrete-time linear systems have been
investigated in [1-6]. The positivity and stability of time-
varying linear systems have been addressed in [12, 16, 18,
20, 22, 23, 28] and the stability of continuous-time linear
systems with delays in [26]. The fractional positive linear
systems have been analyzed in [10, 11, 13, 19, 21, 24, 25,
29]. The positive electrical circuits and their reachability
have been considered in [17] and the controllability and
observability in [9]. The stability and stabilization of positive
fractional linear systems by state-feedbacks have been
analyzed in [25]. The normal positive electrical circuits has
been introduced in [14].

In this paper the determinants of the matrices of
solutions to the standard and positive electrical circuits will
be addressed.

The paper is organized as follows. In section 2 some
preliminaries on linear time-varying systems and the Jacobi
equality are recalled. The determinants of the matrix
solution of standard time-invariant linear electrical circuits
are investigated in section 3. Similarly, problems for positive
electrical circuits are analyzed in section 4. The standard
and positive time-varying linear electrical circuits are
addressed in section 5. Concluding remarks are given in
section 6.

The following notation will be used: R - the set of real

numbers, R™™ - the set of N x M real matrices, RT™ -
the set of nxm matrices with nonnegative entries and

R" :‘RQXI, My, - the set of nxn Metzler matrices (real

matrices with nonnegative off-diagonal entries), |- the
nxn identity matrix.
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Preliminaries
Consider the linear time-varying autonomous system

(1) Xx=A()X, X:%, Xo = X(ty) ,
where x = X(t) e R", the entries a;j(t), i, j=1,..,n of the

matrix  A(t) =[ajj (t)]e R™" are continuous functions of
time t.

Let xc(t), k=1...n be the solution of the equation (1).
Then the matrix X (t) =[x;(t) X, (0] R™" is also
the solution of the equation (1) and

@ X®=ADXO.

The general solution of the equation (2) for any given
initial condition matrix C = X(t;) has the form X (t)C . Itis
well-known [8] that the determinant |X(t)| =det X (t) of the
solution matrix X(t) satisfies the Jacobi equality

j tr A(r)dr
(3) det X (t) =ce?® ,

n

where tr A(t) = > a;i(t) is the trace of the matrix A(t) and
i=1

C is a constant.

From (3) we have the following conclusion.

Conclusion 1. The matrix X(t) for any time t is the

nonsingular matrix, i.e.

(4) det X (t) # 0 for any t e[ty,+o).

In particular case if AeR™" is a constant matrix
(independent of time t), then the general solution of the
equation

(5) X(t)=AX(t), A=[a;]eR™" i, j=1..n

has the form
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6) X (t) =eMc e ™",
where C = X (0) is a matrix of initial conditions.
In this case the Jacobi equality has the form

n
@) dete™ =ce@Mt rA=Ya;,
i=1
where C is a constant.
Theorem 1. The determinant of the matrix X(t) of the

system (2) satisfies the condition
(8) lim det X (t)=0,

t—owo
if

t
9) [tr A(z)dz <0 for t e[0,+0) .
0
Proof. The proof follows immediately from (3) since

t
jtr A(r)dr
lim e° =0
t—o
if (9) is satisfied. o
In particular case for the system (5) we have the following
theorem.
Theorem 2. If the system (5) is asymptotically stable then

(11)

Proof. If the system (5) is asymptotically stable then the
eigenvalues sy of the matrix A satisfies Resy <0,

k=1,..,n and

(10)

lim det X (t)=0.
t—o

n
trA= ZSk <0
k=1

(12)

and this implies (11). o

Standard time-invariant linear electrical circuits

We start the analysis of standard time-invariant linear
electrical circuits with simple examples.
Example 1. Consider the electrical circuit shown in Fig. 1
with given resistance R, inductance L, capacitance C
and source voltage e.

i R L
N ) S

(D

Fig.1. Electrical circuit of Example 1.

C=— U

The electrical circuit is described by the equation
dlu u

(13a) —| . |=Al . |+Be,
dt|i i

where

1
(13b) A= c
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If R>0and L>0, C>0 then from (7) we have
R

lim dete®™ = lime L =0
t—ow t—ow

(14)

since tr A= —% and

lim dete™ =1
t—w

for R=0and L>0, C>0.

Therefore, the deteAt of the electrical circuit decreases to
zero if R>0 andisequalto1if R=0.

Example 2. Consider the linear electrical circuit shown in
Fig. 2 with given resistances R;, R,, Rj, inductances L,

(15)

L, , capacitances C;, C, and source voltages €, , €, .

R] C] Cg R2

€2

Fig.2. Electrical circuit of Example 2.

Using Kirchhoff's laws we may write for the electrical circuit
the equations

. di .
el =(R1 + R3)|1 + le—t1+u1 - R3|2,

(16) € Z(R2+R3)i2+|_2dd%+U2—R3il,
. dUl . dU2
i =C,—, ipb=C,—=.
1 1 dt 2 2 dt

The equations (16) can be written in the form

U U
u u e
(17a) d 2l=A 2|+B| 1,
dt |1 |1 82
iy iy
where
0 0 L 0
G
IR
_ 2
A<l o _RtR R |
L L L
1 R3 R2+R3
(17b) 0 1 L 3
L 2 2 2
o 01
0 0
1
=\ 0
B L
o L
L L]

From (17b) we have
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Rl + R3 _ R2 + R3
Ly L

(18)  trA=-

and from (7)
(19)  lim dete®™ =0
t—o
if at least one of the resistances R;, R,, R; is nonzero.
Note that

(20)  lim dete™ =1

t—o0
if and only if all resistances R;, R,, R; are zero.
In general case we have the following theorem.

Theorem 3. If the electrical circuit contains at least one
resistance then

1) lim dete® =0
t—ow
and
22)  lim dete™ =1
t—o
if the electrical circuit contains only inductances and
capacitances.

Proof. From equations written by the one of Kirchhoff's
laws it follows that the system matrix A of the electrical
circuit has at least one negative entry on the main diagonal
and tr A<0O and this implies (21). If the electrical circuit
contains only inductances and capacitances then tr A=0
and by (3) we obtain (22). o

Theorem 4. Asymptotically stable electrical circuit
consisting of resistances, inductances and capacitances
satisfies the condition (21).

Proof. The proof follows immediately from Theorem 2.
Example 3. Consider the electrical circuit shown in Fig. 3
with given resistances R;, R,, inductances L;, L, and

source voltages €, €.

_ o L
E; § R, D e (D
ik /‘1\ gy
R

Fig.3. Electrical circuit of Example 3.
Using Kirchhoff’s laws we can write the equations
. . di
e =(R + Ryl —Ryip + d—la
(23) i
. . i
€ = —R2|1 + R2|2 + L2 d—f

The equations (23) can be written in the form

oo Y3484
dt|i, i e,

where
RitRy Ry LR
_ L L L
(24b) A= Ry _&,B— 1o
L, L Ly
280

Note that

"R+R, Ry
(25) detA=| M L_RiR
R Ry,
Ly Ly

if at least one of the resistances R;, R, is zero.
Therefore, the electrical circuit is unstable if R; =0 or
R, =0.Letassume that R; #0 and R, =0. Then

R
S+
L

L
0 s 1

R
gives s; :—rl, S, =0 and
1

26)  det[l,s—A]=

Rl
—t
lim dete™ = limdet{fe & 0
t—oow t—oo
@7 0
1y
=lime Y =0.
t—ow

Therefore, the electrical circuit for Ry #0 and R, =0 s
unstable but the condition (21) is satisfied.
Positive time-invariant linear electrical circuits

Consider electrical circuits composed of resistances,

inductances, capacitances and voltage (current) sources.
As the state variables the components of the state vector

X(t) we choose the voltages on the capacitors and the

currents in the coils. Using Kirchhoffs laws we may
describe the linear electrical circuits by the equations [29]

(28a)  X(t)= AX(t)+ Bu(t),
(28b) y(t) =Cx(t),
where x(t)eR", ut)eR™ and y(t)eRP are the state,

input and output vectors and AeR™", BeR™M,

CeRPM,
Definition 1. [29] The electrical circuit (28) is called

(internally) positive if x(t)eR", y(t)eRP, te[0,40) for

all xp =x(0)e R and u(t) e R, t €[0,4+0).
Theorem 5. [29] The electrical circuit (28) is positive if and
only if

(29) AeM,, BeRP™, CcenP".

Definition 2. [29] The positive electrical circuit (28) is called
asymptotically stable if

(30)  lim x(t)=0 for x5 e R’ .

t—>
Theorem 6. [29] The positive electrical circuit is
asymptotically stable if and only if

(31)  Red <0 for k=1,...n,

where 4y is the eigenvalue of the matrix Ae M, .

Note that the electrical circuits shown in Fig. 1 and Fig. 2
are not positive since the matrices A defined by (13b) and
(17b) have negative off-diagonal entries for all nonzero
values of the parameters R, L, C.
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The electrical circuit shown in Fig. 3 is positive since the
matrices defined by (24b) satisfy the condition (29) for all

values of the resistances R;, R, and nonzero values of
the inductances L, L, .

Example 4. [29] Consider the electrical circuit shown in Fig.
4 with given resistances Ry, k=1,...,n, inductances L,,
Ly, ...

, an, capacitances C;, Cs, ..., Cnl and source

voltages €y, €, €4, ..., enz , N=n+ny.

N
R% .
PN

Fig.4. Electrical circuit of Example 4.

R,
i
L,

Gy )“s
[6 =
Re
Ca
-—

Using Kirchhoff’s laws we may write the equations

€y = Rka dstk-i- Uk, k= 1,3,..., n,
(32)

dij
E+RJ‘IJ’, 1:2,4,...,n2.

The equations (32) can be written in the form

-
(33a) —|.|=A.|+Be,
dt|i i

eo+ej =|_l

where
e
Uy I ’
€
us | . | 4
33b) u=| . |, i=|. |, e=|¢e|,
u i
r‘ll n2 _en2
and
A=diag| — ! e = !
G RsGy Rn,Cn,
R
R R L eM,,
L L n,
B
B=| |,
B,
RiC;
1
— 0 0 - 0 <
Bl - R3C3 emil ma
i N .
0 0
_Rn,Cnl |
(33c) LI S o |
I )
1 1
— 0 — 0
By=| L, L, eRPM,
P 1
| Ln, L,
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From (33) it follows that the electrical circuit is positive for
all nonzero values of Ry, k=12,...,n, inductances Lj.

j=2,4,..,n, and capacitances C|, | =13,...,n;. Note that
the positive electrical circuit is unstable if at least one of the
resistances R,, Ry, ..., an is zero.

Theorem 7. If at least one of the entry

1 .
, j = 1,3,..., nl
iCi
R
or —k,
Ly
electrical circuit shown in Fig. 4 is nonzero then

k=2,4,.,n, of the matrix A of the positive

lim dete®' =0 .
tow

(34)

Proof. If at least one diagonal entry of the matrix A is
nonzero then the trA<0 and the condition (34) is
satisfied. o

Remark 1. Theorem 7 is valid for the asymptotically stable
and unstable positive electrical circuit.

Standard and positive time-varying linear electrical
circuits

Consider time-varying linear electrical circuits composed
of resistances, inductances, capacitances depending on
time t and voltage (current) sources. Similarly, as for time-
invariant linear electrical circuits we choose as the state
variables the voltages on the capacitors and the currents in
the coils. Using Kirchhoff's laws we may describe the
electrical circuits by the equations

(35a) X(t) = At)x(t) + B(tu(t),
(35b)  y(®)=C()x(t),
where

where x(t) e R", u(t)eR™ and y(t)e RP are the state,
input and output vectors and A(t)e ™", B(t)e R™™,
C(t)e RP*" are continuous-time matrices.
Theorem 8. [20] The solution of the equation (35a) for
given initial condition x(ty) € R" and input u(t)e R™ has
the form

t
(36a)  x(1) =0 (A)xo+ [K(t,0)B(r)u(r)dr,

0

tﬂ

where
K(t,7) =0 (BIQ] (AT,
(36b) ‘ t t 7
Qto (A =1+ fA(T)dr+ jA(r)fA(Tl)drld7+...
tO tO tO

Definition 3. The electrical circuit described by (35) is
called xt) eR?, yt)eR?,

(internally) positive if

t e[ty,+o0) for any initial conditions X, € K" and all inputs
ut)e RT, telty,+o).

At) e R™", Then
ng(A) eRP", t>t, if and only if A{t)eM,,

Theorem 9. Let t e[ty,+) .

te [t0,+00) .
Proof. The proof is given in [20].
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Theorem 10. The electrical circuit described by (35) is
positive if and only if

(37) A)eM,, By eRT™, Ct)e RP" | telty,+0).

Proof. The proof is given in [20].
Definition 4. The positive electrical circuit described by the
equation

38)  x(t)= A)x(t), At)eM,

is called asymptotically stable if

(39) lim x(t) =0 forall X, e R .
t—ow
Theorem 11. The positive electrical circuit described by
(37) is asymptotically stable if and only if one of the
conditions is satisfied:

1) All coefficients of the polynomial

40)  det[l,s—Al=s"+a,_(1)s" " +...+a(t)s+ay(t)

are positive, ie. a(t)>0 for k=0,l..,n—-1 and

te [to,-i-OO) .

2) All leading principal minors M(t), k=1,...,n of the

matrix —A(t) are positive, i.e.

3 _|man®
Mi(t) =-a;;(1) >0, M,(t) = —ay ()

(41)
M () = det[—A(t)] > 0.

—ay(t) >0
—ax(t)

)

Example 5. Consider the time-varying linear electrical
circuit shown in Fig. 5 with given nonzero resistances

Ri(t), Ry(t), Rs(t), inductances L;(t), L,(t) and source
voltages e;(t), e,(t).

Li) 1) in(t) LoV

R;(1)

Fig.5. Electrical circuit of Example 5.

Using Kirchhoff’s laws we may write the equations
(42)

&)= {R1<t)+ 1()} O+ D 4 Ry tfiy ) -

di
d( ) i (1],

&(t) = {Rz(t)+ ;“} )+ L, 220 20 Ry 11— (V]

The equations (42) can be written in the form

d| it 1 et
43 — t + B(t )
@2 Lz(t)} Al ){ z(t)} ( )Lz(t)}

where
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(43b) ) .
Rl (t)"" R3(t)+ delt(t) R3(t)
| Li(t) Li(t)
D= 1 R, () + R1 t)y+——— dL (®)
Rs (1) 2 3 dt
Ly () Ly (1)
R
B(t) = Ly (1) .
Ly(t)

From (43b) it follows that A(t)eM, and B(t)eR>*?,
tefty,+o) if Re(t)>0, k=123, Lit)>0, Ly(1)>0,
te[ty,+0) and the electrical circuit is a positive time-

varying one.
Using (43b) we obtain

(44)

det[1,5— A(t)]

dLy (t)
R (t)+ Ry (t) + ——2
s+ ! 3 dt Ry
_ Ly (1) Ly(t) ;
L, (t)
Ry() Ry(0)+ Ry 0+ =
L, (1) Ly ()
R, (1)-+ Ry (1) + dLollt(t) Ry () + Ry (1) + dLglt“)
=s"+
Ly (t) Ly (t)

[Rl(t)+R<t>+ 5”}{&0) Ry (1) + d(t)} R2 (1)

L (OL2 (1)

From (44) by Theorem 11 it follows that the positive time-
varying electrical circuit is asymptotically stable if

dLy ()
dt

+

@45)  Re(t)+—<2>0 for k=1.2.

Note that the trace of the matrix A(t) defined by (43b) is

(46)
tr At) =

RO+ Ry ©+ I Ry )4 Ry () + 22
- . dt <o

L® Ly (1)

for t e[ty,+o0)

if the condition (45) is satisfied.
From the Jacobi equality (3) we have

(47) lim detQ; (A)=0
t—o0 0
if (46) holds.
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Note that the asymptotic stability condition (45) of the
positive electrical circuit is stronger than the condition (46)
for (47).

In general case we have the following theorem.

Theorem 12. If the positive time-varying linear electrical
circuit is asymptotically stable then (47) holds.

Proof. Note that by Theorem 11 if the positive electrical
circuit is asymptotically stable then

10 =~ Y5 1) = tr A) <0
k=1

(48)

and by Jacobi equality (3) the condition (47) is satisfied. o
Remark 2. Note that the condition (47) can be also satisfied
if the positive electrical circuit is unstable, for example if

ay(t)=det At)=0.

Concluding remarks

The determinants of the matrices of solutions to the
standard and positive time-invariant and time-varying linear
electrical circuits have been addressed. Necessary and
sufficient conditions for the positivity (Theorem 10) and
stability (Theorem 11) of time-varying linear electrical
circuits have been presented. It has been shown that the
determinants of the matrices of solutions to the standard
time-invariant (Theorem 3) and to the positive (Theorem 12)
time-varying linear electrical circuits are nonzero and they
decrease to zero for time tending to infinity for
asymptotically stable electrical circuits (Theorems 4 and
12). The considerations have been illustrated by examples
of standard and positive time-invariant and time-varying
linear systems. The considerations can be extended to
fractional linear electrical circuits.

Authors: prof. dr hab. inz. Tadeusz Kaczorek, Bialystok University
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