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Abstract. Determinants of the matrices of solutions to the standard and positive time-invariant and time-varying linear electrical circuits are 
addressed. Necessary and sufficient conditions for the positivity and asymptotic stability of the linear time-varying electrical circuits are established. It 
is shown that the determinants of the matrices of solutions to the standard and positive linear electrical circuits are nonzero and they decrease to 
zero for time tending to infinity if the electrical circuit contains at least one resistance and tends to 1 if the electrical circuit does not contain 
resistances. Determinants of the matrices of solutions of asymptotically stable electrical circuits tend to zero for time tending to infinity.  
 

Streszczenie. Praca jest poświęcona analizie wyznaczników macierzy rozwiązań standardowych i dodatnich obwodów elektrycznych o stałych i 
zmiennych w czasie parametrach. Podano warunki konieczne i wystarczające dodatniości i stabilności asymptotycznej obwodów liniowych o 
zmiennych w czasie parametrach. Wykazano, że wyznaczniki macierzy rozwiązań standardowych i dodatnich obwodów o stałych i zmiennych w 
czasie parametrach są niezerowe i dążą do zera dla czasu dążącego do nieskończoności, gdy obwód elektryczny zawiera przynajmniej jedną 
rezystancję i dąży do 1, gdy obwód nie zawiera rezystancji. Wyznaczniki macierzy rozwiązań stabilnych asymptotycznie obwodów elektrycznych 
dążą do zera dla czasu dążącego do nieksończoności. (Wyznaczniki macierzy rozwiązań standardowych i dodatnich liniowych obwodów 
elektrycznych) 
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Słowa kluczowe: wyznacznik macierzy rozwiązań, standardowy i dodatni, o parametrach stałych i zmiennych w czasie, obwód 
elektryczny, stabilność. 
 
 

Introduction 
A dynamical system is called positive if its trajectory 

starting from any nonnegative initial state remains forever in 
the positive orthant for all nonnegative inputs. An overview 
of the state of the art in positive systems theory is given in 
the monographs [7, 15]. Variety of models having positive 
behaviour can be found in engineering, economics, social 
sciences, biology, medicine, etc. 

The Lyapunov, Bohl and Perron exponents and stability 
of time-varying discrete-time linear systems have been 
investigated in [1-6]. The positivity and stability of time-
varying linear systems have been addressed in [12, 16, 18, 
20, 22, 23, 28] and the stability of continuous-time linear 
systems with delays in [26]. The fractional positive linear 
systems have been analyzed in [10, 11, 13, 19, 21, 24, 25, 
29]. The positive electrical circuits and their reachability 
have been considered in [17] and the controllability and 
observability in [9]. The stability and stabilization of positive 
fractional linear systems by state-feedbacks have been 
analyzed in [25]. The normal positive electrical circuits has 
been introduced in [14]. 

In this paper the determinants of the matrices of 
solutions to the standard and positive electrical circuits will 
be addressed. 

The paper is organized as follows. In section 2 some 
preliminaries on linear time-varying systems and the Jacobi 
equality are recalled. The determinants of the matrix 
solution of standard time-invariant linear electrical circuits 
are investigated in section 3. Similarly, problems for positive 
electrical circuits are analyzed in section 4. The standard 
and positive time-varying linear electrical circuits are 
addressed in section 5. Concluding remarks are given in 
section 6. 
 The following notation will be used:   - the set of real 

numbers, 
mn  - the set of mn  real matrices, mn

  - 

the set of mn  matrices with nonnegative entries and 
1

  nn , nM - the set of nn  Metzler matrices (real 

matrices with nonnegative off-diagonal entries), nI - the 

nn  identity matrix. 
 

Preliminaries 
 Consider the linear time-varying autonomous system 
 

(1)  xtAx )( , 
dt

dx
x  , )( 00 txx  , 

where ntxx  )( , the entries )(taij , nji ,...,1,   of the 

matrix nn
ij tatA  )]([)(  are continuous functions of 

time t . 

Let )(txk , nk ,...,1  be the solution of the equation (1). 

Then the matrix nn
n txtxtX  ])()([)( 1   is also 

the solution of the equation (1) and 
 

(2)  )()()( tXtAtX  . 
 

The general solution of the equation (2) for any given 
initial condition matrix )( 0tXC   has the form CtX )( . It is 

well-known [8] that the determinant )(det)( tXtX   of the 

solution matrix )(tX  satisfies the Jacobi equality 

 (3)  




t

dA

cetX 0

)(tr

)(det


, 

where 



n

i
ii tatA

1
)()(tr  is the trace of the matrix )(tA  and 

c  is a constant. 
From (3) we have the following conclusion. 
Conclusion 1. The matrix )(tX  for any time t  is the 

nonsingular matrix, i.e. 
 

(4)  0)(det tX  for any ),[ 0  tt . 
 

In particular case if nnA   is a constant matrix 
(independent of time t ), then the general solution of the 
equation 
 

(5)  )()( tAXtX  , nn
ijaA  ][ , nji ,...,1,   

 

has the form 
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(6)  nnAtCetX )( , 
 

where )0(XC   is a matrix of initial conditions. 

In this case the Jacobi equality has the form 
 

(7)  tAAt cee )(trdet  , 



n

i
iiaA

1
tr , 

where c  is a constant. 

Theorem 1. The determinant of the matrix )(tX  of the 

system (2) satisfies the condition 
 

(8)  0)(detlim 


tX
t

, 

if 

(9)   
t

dA
0

0)(tr   for ),0[ t . 

Proof. The proof follows immediately from (3) since 
 

(10) 0lim 0

)(tr






t

dA

t
e


 

if (9) is satisfied. □ 
In particular case for the system (5) we have the following 
theorem. 
Theorem 2. If the system (5) is asymptotically stable then 
 

(11) 0)(detlim 


tX
t

. 
 

Proof. If the system (5) is asymptotically stable then the 
eigenvalues ks  of the matrix A  satisfies 0Re ks , 

nk ,...,1  and 

 (12) 0tr
1

 


n

k
ksA  

 

and this implies (11). □ 
 

Standard time-invariant linear electrical circuits 
 We start the analysis of standard time-invariant linear 
electrical circuits with simple examples. 
Example 1. Consider the electrical circuit shown in Fig. 1 
with given resistance R , inductance L , capacitance C  
and source voltage e . 
 

 
 

Fig.1. Electrical circuit of Example 1. 
 

The electrical circuit is described by the equation 
 

(13a) Be
i

u
A

i

u

dt

d


















, 

where 
 

(13b) 



















L

R

L

CA
1

1
0

, 


















L

B 1

0

. 

 

If 0R  and 0L , 0C  then from (7) we have 

 (14) 0limdetlim 




t
L

R

t

At

t
ee  

since 
L

R
A tr  and 

 (15) 1detlim 


At

t
e  

for 0R  and 0L , 0C . 

Therefore, the Atedet  of the electrical circuit decreases to 
zero if 0R  and is equal to 1 if 0R . 
Example 2. Consider the linear electrical circuit shown in 
Fig. 2 with given resistances 1R , 2R , 3R , inductances 1L , 

2L , capacitances 1C , 2C  and source voltages 1e , 2e . 
 

 
 

Fig.2. Electrical circuit of Example 2. 
 

Using Kirchhoff’s laws we may write for the electrical circuit 
the equations 

(16) 

.  ,

,)(

,)(

2
22

1
11

132
2

22322

231
1

11311

dt

du
Ci

dt

du
Ci

iRu
dt

di
LiRRe

iRu
dt

di
LiRRe







 

The equations (16) can be written in the form 
 

(17a) 















































2

1

2

1

2

1

2

1

2

1

e

e
B

i

i

u

u

A

i

i

u

u

dt

d
, 

where 

 (17b) 

.

1
0

0
1

00

00

,

1
0

0
1

1
000

0
1

00

2

1

2

32

2

3

2

1

3

1

31

1
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


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






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
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


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
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















L

L
B

L

RR

L

R

L

L

R

L

RR

L

C

C

A

 

 
From (17b) we have 
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(18) 
2

32

1

31tr
L

RR

L

RR
A





  

and from (7) 

 (19) 0detlim 


At

t
e  

if at least one of the resistances 1R , 2R , 3R  is nonzero. 

Note that 

 (20) 1detlim 


At

t
e  

if and only if all resistances 1R , 2R , 3R  are zero. 

In general case we have the following theorem. 
Theorem 3. If the electrical circuit contains at least one 
resistance then 

 (21) 0detlim 


At

t
e  

and 

 (22) 1detlim 


At

t
e  

if the electrical circuit contains only inductances and 
capacitances. 
Proof. From equations written by the one of Kirchhoff’s 
laws it follows that the system matrix A  of the electrical 
circuit has at least one negative entry on the main diagonal 
and 0tr A  and this implies (21). If the electrical circuit 
contains only inductances and capacitances then 0tr A  
and by (3) we obtain (22). □ 
Theorem 4. Asymptotically stable electrical circuit 
consisting of resistances, inductances and capacitances 
satisfies the condition (21). 
Proof. The proof follows immediately from Theorem 2. 
Example 3. Consider the electrical circuit shown in Fig. 3 
with given resistances 1R , 2R , inductances 1L , 2L  and 

source voltages 1e , 2e . 
 

 
 
Fig.3. Electrical circuit of Example 3. 
 

Using Kirchhoff’s laws we can write the equations 

 (23) 

.

,)(

2
222122

1
1221211

dt

di
LiRiRe

dt

di
LiRiRRe




 

The equations (23) can be written in the form 
 

(24a) 


























2

1

2

1

2

1

e

e
B

i

i
A

i

i

dt

d
, 

where 
 

(24b) 














































2

1

2

2

2

2

1

2

1

21

1
0

0
1

  ,

L

L
B

L

R

L

R
L

R

L

RR

A . 

 

Note that 

 (25) 0det
21

21

2

2

2

2

1

2

1

21








LL

RR

L

R

L

R
L

R

L

RR

A  

if at least one of the resistances 1R , 2R  is zero. 

Therefore, the electrical circuit is unstable if 01 R  or 

02 R . Let assume that 01 R  and 02 R . Then 

 (26) 0
0

0
]det[

1

1
1

1

2 












L

R
ss

s
L

R
s

AsI  

gives 
1

1
1 L

R
s  , 02 s  and 

 (27) 

.0lim

10

0detlimdetlim

1

1

1

1




























t
L

R

t

t
L

R

t

At

t

e

ee

 

Therefore, the electrical circuit for 01 R  and 02 R  is 

unstable but the condition (21) is satisfied. 
 

Positive time-invariant linear electrical circuits 
 Consider electrical circuits composed of resistances, 
inductances, capacitances and voltage (current) sources. 
As the state variables the components of the state vector 

)(tx  we choose the voltages on the capacitors and the 

currents in the coils. Using Kirchhoff’s laws we may 
describe the linear electrical circuits by the equations [29] 
 

(28a) )()()( tButAxtx  , 

(28b) )()( tCxty  , 

where ntx )( , mtu )(  and pty )(  are the state, 

input and output vectors and nnA  , mnB  , 
npC  . 

Definition 1. [29] The electrical circuit (28) is called 

(internally) positive if ntx )( , pty )( , ),0[ t  for 

all nxx  )0(0  and mtu )( , ),0[ t . 

Theorem 5. [29] The electrical circuit (28) is positive if and 
only if 

 (29) nMA , mnB 
 , npC 

 . 
 

Definition 2. [29] The positive electrical circuit (28) is called 
asymptotically stable if 

 (30) 0)(lim 


tx
t

 for nx 0 . 

 

Theorem 6. [29] The positive electrical circuit is 
asymptotically stable if and only if 
 
(31) 0Re k  for nk ,...,1 , 

 
where k  is the eigenvalue of the matrix nMA . 

Note that the electrical circuits shown in Fig. 1 and Fig. 2 
are not positive since the matrices A  defined by (13b) and 
(17b) have negative off-diagonal entries for all nonzero 
values of the parameters R , L , C . 
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The electrical circuit shown in Fig. 3 is positive since the 
matrices defined by (24b) satisfy the condition (29) for all 
values of the resistances 1R , 2R  and nonzero values of 

the inductances 1L , 2L . 

Example 4. [29] Consider the electrical circuit shown in Fig. 
4 with given resistances kR , nk ,...,1 , inductances 2L , 

4L , …, 
2nL , capacitances 1C , 3C , …, 

1nC  and source 

voltages 0e , 2e , 4e , …, 
2ne , 21 nnn  . 

 

 
 

Fig.4. Electrical circuit of Example 4. 
 

Using Kirchhoff’s laws we may write the equations 
 

(32) 

.,...,4,2  ,

,,...,3,1  ,

20

10

njiR
dt

di
Lee

nku
dt

du
CRe

jj
j

jj

k
k

kk




 

 

The equations (32) can be written in the form 

 (33a) Be
i

u
A

i

u

dt

d


















, 

where 

 (33b) 



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
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


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
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


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
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
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
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e
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
, 

and 

 (33c) 
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From (33) it follows that the electrical circuit is positive for 
all nonzero values of kR , nk ,...,2,1 , inductances jL , 

2,...,4,2 nj   and capacitances lC , 1,...,3,1 nl  . Note that 

the positive electrical circuit is unstable if at least one of the 
resistances 2R , 4R , …, 

2nR  is zero. 

Theorem 7. If at least one of the entry 
jjCR

1
, 1,...,3,1 nj   

or 
k

k

L

R
, 2,...,4,2 nk   of the matrix A  of the positive 

electrical circuit shown in Fig. 4 is nonzero then 
 

(34) 0detlim 


At

t
e . 

 

Proof. If at least one diagonal entry of the matrix A  is 
nonzero then the 0tr A  and the condition (34) is 
satisfied. □ 
Remark 1. Theorem 7 is valid for the asymptotically stable 
and unstable positive electrical circuit. 
 

Standard and positive time-varying linear electrical 
circuits 
 Consider time-varying linear electrical circuits composed 
of resistances, inductances, capacitances depending on 
time t  and voltage (current) sources. Similarly, as for time-
invariant linear electrical circuits we choose as the state 
variables the voltages on the capacitors and the currents in 
the coils. Using Kirchhoff’s laws we may describe the 
electrical circuits by the equations 
 
(35a) )()()()()( tutBtxtAtx  , 

(35b) )()()( txtCty  , 
 

where 

where ntx )( , mtu )(  and pty )(  are the state, 

input and output vectors and nntA )( , mntB )( , 

nptC )(  are continuous-time matrices. 

Theorem 8. [20] The solution of the equation (35a) for 

given initial condition ntx )( 0  and input mtu )(  has 

the form 

 (36a) 
t

t

t
t duBtKxAtx

0

0
)()(),()()( 0  , 

where 

 (36b) 
  

 

t

t t

t

t
n

t
t

t
t
t

ddAAdAIA

AAtK

0 00

0

00

...)()()()(

,)]()[(),(

11

1









 

 

Definition 3. The electrical circuit described by (35) is 

called (internally) positive if ntx )( , pty )( , 

),[ 0  tt  for any initial conditions nx 0  and all inputs 

mtu )( , ),[ 0  tt . 

Theorem 9. Let nntA )( , ),[ 0  tt . Then 

nnt
t A 

 )(
0

, 0tt   if and only if nMtA )( , 

),[ 0  tt . 

Proof. The proof is given in [20]. 
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Theorem 10. The electrical circuit described by (35) is 
positive if and only if 
 

(37 ) nMtA )( , mntB 
)( , nptC 

)( , ),[ 0  tt . 
 

Proof. The proof is given in [20]. 
Definition 4. The positive electrical circuit described by the 
equation 
 

(38) )()()( txtAtx  , nMtA )(  
 

is called asymptotically stable if 
 

(39) 0)(lim 


tx
t

 for all nx 0 . 

Theorem 11. The positive electrical circuit described by 
(37) is asymptotically stable if and only if one of the 
conditions is satisfied: 

1) All coefficients of the polynomial 
 

(40) )()(...)(]det[ 01
1

1 tastastasAsI n
n

n
n  

   
 

are positive, i.e. 0)( tak  for 1,...,1,0  nk  and 

),[ 0  tt . 
 

2) All leading principal minors )(tMk , nk ,...,1  of the 

matrix )(tA  are positive, i.e. 
 

(41)  

.0)](det[)(  ...,

,0
)()(

)()(
)(  ,0)()(

2221

1211
2111









tAtM

tata

tata
tMtatM

n

 

 

Example 5. Consider the time-varying linear electrical 
circuit shown in Fig. 5 with given nonzero resistances 

)(1 tR , )(2 tR , )(3 tR , inductances )(1 tL , )(2 tL  and source 

voltages )(1 te , )(2 te . 
 

 
 
Fig.5. Electrical circuit of Example 5. 
 

Using Kirchhoff’s laws we may write the equations 
 
(42)

)].()()[(
)(

)(
)(

)()(

)],()()[(
)(

)(
)(

)()(

123
2

22
2

22

213
1

11
1

11

tititR
dt

tdi
Lti

dt

tdL
tRte

tititR
dt

tdi
Lti

dt

tdL
tRte





 





 

  
The equations (42) can be written in the form 
 

(43a) 







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




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
)(

)(
)(

)(

)(
)(

)(

)(

2

1

2

1

2

1
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tB

ti

ti
tA

ti

ti

dt

d
, 

where 
 
 

(43b)

.
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0
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

tL
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tB

tL
dt

tdL
tRtR

tL

tR

tL

tR

tL
dt

tdL
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From (43b) it follows that 2)( MtA   and 22)( 
tB , 

),[ 0  tt  if 0)( tRk , 3,2,1k , 0)(1 tL , 0)(2 tL , 

),[ 0  tt  and the electrical circuit is a positive time-

varying one. 
Using (43b) we obtain 
 

(44)
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From (44) by Theorem 11 it follows that the positive time-
varying electrical circuit is asymptotically stable if 
 

(45) 0
)(

)( 
dt

tdL
tR k

k  for 2,1k . 

 

Note that the trace of the matrix )(tA  defined by (43b) is 
 

(46)

 
0

)(

)(
)()(

)(

)(
)()(

)(tr

2

2
32

1

1
31




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
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 for ),[ 0  tt  
 

if the condition (45) is satisfied. 
From the Jacobi equality (3) we have 
 

(47) 0)(detlim
0




At
tt

 

 

if (46) holds. 
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Note that the asymptotic stability condition (45) of the 
positive electrical circuit is stronger than the condition (46) 
for (47). 
In general case we have the following theorem. 
Theorem 12. If the positive time-varying linear electrical 
circuit is asymptotically stable then (47) holds. 
Proof. Note that by Theorem 11 if the positive electrical 
circuit is asymptotically stable then 
 

(48) 0)(tr)()(
1

1  



n

k
kn tAtsta  

 

and by Jacobi equality (3) the condition (47) is satisfied. □ 
Remark 2. Note that the condition (47) can be also satisfied 
if the positive electrical circuit is unstable, for example if 

0)(det)(0  tAta . 

 
Concluding remarks 
 The determinants of the matrices of solutions to the 
standard and positive time-invariant and time-varying linear 
electrical circuits have been addressed. Necessary and 
sufficient conditions for the positivity (Theorem 10) and 
stability (Theorem 11) of time-varying linear electrical 
circuits have been presented. It has been shown that the 
determinants of the matrices of solutions to the standard 
time-invariant (Theorem 3) and to the positive (Theorem 12) 
time-varying linear electrical circuits are nonzero and they 
decrease to zero for time tending to infinity for 
asymptotically stable electrical circuits (Theorems 4 and 
12). The considerations have been illustrated by examples 
of standard and positive time-invariant and time-varying 
linear systems. The considerations can be extended to 
fractional linear electrical circuits. 
 
Authors: prof. dr hab. inż. Tadeusz Kaczorek, Bialystok University 
of Technology, Faculty of Electrical Engineering, Wiejska 45D, 15-
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