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Abstract. The Pareto principle has been applied in economic sciences with particular emphasis on the problems associated with optimal decision 
making. In this paper the Pareto principle is modified in order to study the dynamics of electrical systems described by a nonlinear equation of state. 
A multi-parameter system with the parameters constituting the elements of the analyzed system has been defined.  
 
Streszczenie. Zasada Pareto znalazła zastosowanie głównie w dziedzinie nauk ekonomicznych, ze szczególnym uwzględnieniem problemów 
związanych z optymalizacją podejmowania decyzji. W tym artykule zasada Pareto została zmodyfikowana w celu zbadania dynamiki układów 
elektrycznych opisanych przez nieliniowe równania stanu. Zdefiniowano wielo-parametryczny układ elementów analizowanego układu 
elektrycznego.(Nowe podejście do analizy nieliniowych układów elektrycznych) 
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Introduction  

The “Pareto principle” (1887) has been used 
in economics, product quality management as well as 
decision problems solving [1,2,3,10,16]. The creator of the 
“Pareto principle”, Vilfredo Pareto was a  professor at the 
University of Lausanne who, while studying the distribution 
of incomes in Italy, found out that 80% of the assets were in 
the hands of 20% of the entire population. This finding, also 
called the 80-20 rule, has shown validity, for instance, in the 
following statements: 80% of a company’s sales come from 
20%  
of its products, 80% of all decisions is determined by 20% 
of available information, or 80% of shortcomings result from 
20% of causes. Further research confirmed the existence of 
the 80/20 rule in many areas of life and was transferred to 
a number of technical applications [11-15]. Making use 
of the “Pareto Principle”, it is possible to create ABC charts 
in order to define parameter classes that exert decisive, 
medium, and marginal impact on the objective function to 
describe specific research results, for example to determine 
the main causes of car accidents. Moreover, the principle 
was used for the optimization of a permanent-magnet 
alternator in terms of iron and copper losses, material costs, 
rated voltage and air-gap induction [11]. In paper [12] an 
evolutionary-based approach employing the Pareto front 
was presented in order to minimize the fuel cost and to 
improve voltage profile as well as enhance voltage stability. 

In their papers [13,14] the authors used a  mathematical 
model in the form of a heat conduction equation in solids 
solved by finite element method to determine the 
parameters that exert decisive influence on the temperature 
of high-voltage cable cores located at different depths in 
the ground. Using both the “Pareto principle” and ABC-
analysis, the authors showed how cable core temperature 
is affected by such parameters as air temperature above 
the ground Ta, thermal conductivity of the ground λ 
and current load of the system I. The authors also 
determined the elements of class A having a decisive 
influence on the temperature field in the cable core 
and analyzed changes of the elements with respect to 
the cable cores arranged at different depths in the ground. 

One of the primary uses of the principle based 
on the research of ABC-analysis is the study of inventory 
items that play a central role in the production or sale 
of a specific product. The principle is also used in inventory 
classification of warehouse management systems. In the 
latter case complex mathematical models have been 
developed to facilitate decisions concerning stockpiling, 
monitoring and managing material resources of great 

industrial corporations. The models are constructed on the 
principles of linear and nonlinear programming or using 
optimization methods basing on the theory of genetic 
algorithms [2,4-9]. 

The purpose of this paper is not to optimize the systems 
described here by a linear or nonlinear state equation 
[18,19,22]. That issue will be dealt with in the future as 
a continuation of the present research. Specifically, this 
paper focuses on the results concerning the determination 
of the impact of individual parameters of the analyzed 
system on its dynamics defined by means of the objective 
functions with vector norms used as their constructing 
elements. The analyzed systems are defined as multi-
parameter systems describing the obtained results by 
elements of linear algebra instead of the classical method 
of A,B and C classes and the Lorenz curve. 

Initial work describing a successful application of this 
principle to models in the form of partial differential 
equations was presented in papers [13,14]. The results 
demonstrate great potential of the method use for the 
analysis of electrical circuits, which is the reason for 
undertaking the following study on the nonlinear state 
equation. 

The modification of the Pareto principle for analysis of 
the nonlinear state equation involves the following aspects: 
- application of the method to analyze multi-parameter 

electrical systems, 
- generalized way of investigating the dynamics 

of electrical systems, 
- introduction (and development) of elements of linear 

algebra to describe the method. 
 

Basic definitions and the algorithm used in the method 
The dynamics of nonlinear electrical systems is 

described by the state equation: 

(1) oxxtuxfx  )0(),,(  

where f(x,u,t) is a set of non-linear vector functions, x(t) ϵ Rn 
and u(t) ϵ Rm are state variables and input vectors 
respectively, x0 represents the vector of initial conditions. 
The basic techniques of analyzing equation (1) are 
numerical methods [19], owing to which it is possible to 
accomplish the quantitative analysis of the model. They 
require, however, a lot of experience from the one 
performing the calculation. 

On the other hand, the qualitative analysis of equation 
(1) is no less interesting as it defines the influence 
of individual factors from equation (1) on the dynamics 
of the modeled system. To this end, we analyze a nonlinear 
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equation with three state variables x1(t), x2(t), x3(t) in order to 
study the impact of factors bk (k = 1,…,9) on the dynamics 
of the system. 

 ẋ1 = b1x1 + b2x2 + b3x3x2
2 

(2) ẋ2 = b4x1 + b5x2 + b6x3 
 ẋ3 = -b7x1 - b8x2 - b9x3 + E,   x(0) = 0 

where: 

 b1 = 1.2, b2 = 1.5, b3 = 1.4, 

(3) b4 = 2.0, b5 = 1.0, b6 = 1.3, 
 b7 = 2.0, b8 =40.0, b9 = 16.0. 

In this case E is an input function and its value is 
changed in order to perform a global analysis of 
the system’s dynamics. We assume that in this case 
parameters bk (k = 1,…,9) are also the rated coefficients. 
The system of equations (2) forms a multi-parameter 
system with parameters bk (in Def. 1 pk). The following 
definition of the multi-parameter system was developed 
to carry out an original analysis of electrical systems 
described by a nonlinear state equation. The analysis 
employs the Pareto principle, which, as mentioned before, 
is used primarily in economic sciences. Introducing Pareto’s 
80/20 law in technical sciences with emphasis on electrical 
systems is an original development. It makes use 
of the following definitions and algorithm for the analysis 
of multi-parameter systems [15]. 

Def. 1. A multi-parameter system is defined as 
a physical system that can be described by a function 
dependent on a number of parameters 

(4a) Fp = f(p1,..,pn) 

Function F  depends on vector P, 

(4b) P = [p1,…,pn] 

whose elements are parameters p1,…,pn, 
where in the changes in the value of p1,…,pn, are limited, 

(4c) mk  ≤ pk ≤ nk,   k = 1,2,…,n 

The changes of parameter values result from the 
previously made assumptions, the technological process 
employed in the production of the system elements or 
changes in the physical environment in which the system 
operates, while mk, nk constitute the lower and upper limits 
of these changes. 

The parameters p1,…,pn, on whose values the objective 
function remains dependent, are called base parameters. 

Definition 1 applies to electrical systems described by 
partial differential equations, for example, cable systems 
laid at different depths in the ground [13,14] as well as 
electrical systems described by a nonlinear and linear state 
equation [18,19,22]. In the latter case, the parameters are 
formed by elements aij that belong to matrix A found 
in the linear state equation or they are the coefficients 
in the nonlinear equation. 

Function Fp dependent on the value of parameters 
p1,…,pn (mk ≤ pk ≤ nk,   k = 1,2,…,n) is defined as an objective 
function with its primary aim of analysis being the definition  
of A,B and C classes as having a decisive, medium 
and marginal impact on the function’s value. 

Def. 2. The range of base parameter changes affecting 
the value of the objective function resulting from 
the changing conditions of the physical environment 
in which the analyzed system operates, production 
technology system components, or the assumed changes 
in the values of the system are called base change ranges. 

Def. 3. Parameter pb determining further analysis 
of the impact of individual parameters p1,…,pn on 
the function’s value is called basic parameter. 

Using the methodology for determining the ABC charts 
[13,14], the following are the basic formulas developed to 
analyze the impact of various system parameters 
on the value of the objective function: 

(5) 
maxp,k

minp,kmaxp,k
pw,k F

FF
F


  

where Fk,pw is a relative objective function depending on 
parameter k (k = 1,2,…,n), Fk,pmax - Fk,pmin is the difference 
between the maximum and minimum value of the objective 
function Fp determined for parameters mk and nk (i.e. for 
the assumed range of base changes of parameter k). 

(6) 
k

pw,ks FF    (k = 1,…,n) 

wherein Fs is the sum of Fk,pw, whereas n is the number  
of parameters present in formula (3). Introducing 
an element of the cumulative value ak (weight ratio) 
corresponding to parameter pk, for each basic parameter pb  
(b = 1,…,M) 

(7) 




k
pw,k

pw,k
k F

F
a    (k = 1,…,n) 

we obtain the relative total value of weighting factors S = 1. 

(8)   
k l

lk RaaS  

The weight coefficients ak determine the impact level 
of individual parameters on the relative value 
of the objective function Fk,pw. Some part ak of the weight 
coefficients represent elements of A and B classes that 
exert a decisive and a medium impacts on the relative value 
of objective function Fk,pw, R denotes the elements of class 
C that have a marginal impact. 

Elements of the cumulative value ak form matrix A = [aij], 
(i =1,…,M; j = 1,…,n) whose number of rows depends on 
particular values of basic parameters pb (b = 1,…,M) and the 
number of columns depends on n number of parameters  

pn = bn. 

(9) 

E

E
Ε

aaa

aaa
aaa

A

bbb

MbM

b

b

MnMM

n

n

n

p

p

p

...



































22

11

21

22221

11211

21  

wherein, for example element a11 of matrix A corresponds to 
the weight coefficient a1 for input function 
E1 (E1 = pb1). 

Distinction must be made here between relative 
objective function Fpw and objective function Fp. The former 
represented by formula (5) is used to determine the weight 
coefficients found in (9) whereas the latter is used to 
calculate Fpw and may be represented, for example, by one 
of the vector norms. The procedure for the method is as 
follows [15]: 

Step 1. Given equation (1), we can determine 
the following: vector P depending on parameters  
pk (k = 1,…,n), objective function Fp with the constraints for 
parameters pk, relative objective function Fpw, and basic 
parameter pb. 

Step 2. For maximum and minimum values pk  

(k = 1,2,…,n), we resolve 2n times equation (1) describing 
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the system [15]. We determine weight coefficients ak 
and cumulative value S. 

Step 3. We set matrix A in order to determine the 
content of ak = aij in cumulative value S for each individual 
value of basic parameter pb. 

Step 4. On the basis of the elements of matrix A, we 
determine parameters pk which define elements of A,B 
and C sets. 

Step 5. We create charts to illustrate the arrangement 
of elements in sets A,B and C depending on the value 
of basic parameter pb. 

In order to illustrate the developed algorithm we present 
two examples of nonlinear systems described by 
equation (1). The examples illustrating the developed 
procedure show the normalized system described by the 
equation with dimensionless variables and dimensionless 
input function, and the electrical circuit which is 
characterized by a normalized objective function by 
reference of the integral of the absolute value xk to kth 

established value of the state variable. 
 

Dimensionless nonlinear system 
The first example illustrating the above algorithm 

involves analysis of equation (1) with parameters (2). 
The base changes of parameters b1,…,b9 in relation to rated 
values equal ±10%. The basic parameter pb = Eb (b = 1,…,8) 
assumes the following values: 5, 10, 15, 20, 25, 30, 35, 40. 

Relative objective function Fpw is defined as follows: 

(10) 
max,

min,max,
pw ||x||

||x||||x||
F

1

11 
  

(11)   
31 2

0
3

0 0
211

tt t

p dt|)t(x|dt|)t(x|dt|)t(x|||x||F  

where t1, t2, t3 are the setting times of individual state 
variables, which are defined for tl (l = 1,2,3) satisfying 
the condition of one percentage deviation from steady state. 
State variables xl are dimensionless. In relation to function 
Fp, it is assumed that it is a monotonic function and there 
are no local extrema in the [mk, nk] interval. 

Therefore, in accordance with the algorithm described in 
subsection 2 above, the results of individual stages 
of the procedure are as follows: 
Step 1. Vector P has the following components: 

 P = [b1,…,b9] 

(12) 
max,k

min,kmax,k
pw,k ||x||

||x||||x||
F

1

11 
  

    
31 2

0
3

0 0
211

tt t

p,k dt|)t(x|dt|)t(x|dt|)t(x|||x||F  

 0.9·bk ≤ bk ≤ 1.1·bk,   k = 1,…,9 

Step 2. It is assumed that parameters bk are subjected 

to change by ±10%, the cumulative value 
k

kaS , 

and individual weighting coefficients are determined by 
solving 2n times equation (2). Exemplary weight coefficients 
ak and their contribution to the cumulative value S for E7 = 35 
is shown below. The remaining R contains ak ≤ 0.05.  
The number of the parameter is given in parentheses: 
E7 = 35 

(13a) 
k

kaS = 0.08(b1) + 0.05(b2) + 0.01(b3) + 0.04(b4) + 

0.09(b5) + 0.28(b6) + 0.02(b7) + 0.28(b8) + 0.15(b9) = 1.0 

(13b) 
l

laS + R = 0.08(b1) + 0.09(b5) + 0.28(b6) + 

+ 0.28(b8)+ 0.15(b9) + R = 0.88 + R 

Step 3. Matrix A  = [aij] is as follows: 

(14)
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Step 4. For basic parameter E7 = 35 in A,B and C we 
have the following items:  

E7 = 35 

(15) A = {b6,b8,b9,b5}, B = {b1, b2 }, C = {b3,b4,b7}  

Step 5. The curves defining the element arrangement 
in A,B and C classes depending on the value of the basic 
parameter are shown in Figure 2. 

 

Fig. 2. Impact of the basic parameter Eb on ak value for different bk 

 
By analyzing the curves shown in Figure 2, it must be 

concluded that the greatest impact on the system dynamics 
is exerted by parameters b6, b8, b9 throughout the whole 
range of the basic parameter changes (A = {b6,b8,b9} for E 
from 5 to 40). The curves of parameters b6,b8,b9 intersect 
at several points causing changes in the arrangement 
of class A elements that have the decisive influence 
on the dynamics of the system.  

 

 
Fig. 3. ABC chart of the system described by a nonlinear equation 
of state (2) for E7 = 35 [15] 
 

For comparison’s sake, a classical interpretation 
the Pareto principle based on the ABC charts and Lorenz 
curve is presented in Figure 3, (E7 = 35). They can also be 
used to specify the weight coefficients of ak, which are 
the percentage rates of cumulative value S listed 
on the right axis of the Pareto chart. 
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Figure 4 shows the norm curves ||x||1 for E7 = 35 

depending on the assumed changes of parameter b6, b8 as 
well as the changes of parameter b3. The curves illustrate, 
respectively, decisive and marginal impacts of values b6, b8 

and b3 on norm ||x||1 which is in good agreement with the bar 
charts shown in Figure 4. 

 
Fig. 4. Norm charts ||x||1 depending on parameters b8,b6 and b3,  
E7 = 35  
 

a) 

 
b) 

 
Fig. 5. Curves of state variables xl = xl(t) for change of parameter 
value from b6 1.19 into 1.18; a) x3 < 0 and b) x3  > 0 (E7= 35) [15] 
 

 
Fig. 6. Curves for state variables xl = xl(t) for b6 = 0.90 (E7 = 35) [15] 

The value of norm ||x||1 depends indirectly on 
l

lt  of 

setting times tl of the state variables. Figure 5 shows the 
curves of state variables xl = xl(t) (l = 1,2,3) for E7 = 35. With 
practically a  step change of ||x||1 in the range of b6 changes 
from 1.18 to 1.19, it is possible to observe changes of the 
steady state of state variable x3 from x3(t) < 0 into x3(t) > 0 
(from negative to positive). It is also of interest to determine 
the state of the system at higher changes of parameter b6. 
For b6 < 0.89 the system becomes unstable in the Lapunov 
sense i.e. vector x does not return to the equilibrium point, 
as illustrated in Figure 6. 

 

The electrical circuit with a  nonlinear coil 
Another example illustrating the algorithm is the analysis 

of an electric circuit with a nonlinear coil in which magnetic 
flux Φ is approximated by dependence Φ = b·arctg(a·i), 
where a and b are coefficients [21]. In this case,  
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Fig. 7. The electrical circuit with a  nonlinear coil [15] 
 

The circuit is shown in Figure 7, which after 
transformations, can be described by the following set  
of equations [22]: 
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where x1 = i (t), x2 = u1(t), x3 = u2(t) 

In this case: 

(17) 
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with the values of the elements in the circuit: 

 R1 = 10Ω C1 = 5·10-3F e1 = 200V  800V 

(18) R2 = 10Ω C2 = 5·10-3F E2 = 200V = const 

 a  = 3.0A-1 b = 2.0Wb z = 500 (number of turns) 

 R3 = 200Ω 

The parameters used for analysis are assumed to be 
the rated parameters of the circuit. Parameter e1 is the basic 
parameter set to range from 200V to 800V, E2 = const. 

In the analyzed example, in order to determine 
the impact of individual circuit elements on the value 
of the objective function Fk,p , the assumed pk parameters are 
the ones given in (18) above. 
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The results obtained according to the procedure given 
in subsection 2 are presented below. 

Step 1.  
Vector P has the following components: 

P = [a,b,C1,C2,R1,R2,R3,z] 

(19) 
max,k

min,kmax,k
pw,k ||x||

||x||||x||
F

1

11 
  
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0.9 · pk ≤ pk ≤ 1.1·pk,   k = 1,2,…,8 

where wlu (l = 1,2,3) is a steady value determined for 
individual state variables and components ||x||1 are time-
dependent on their steady state times tl. 

Step 2. 
The circuit parameters are assumed to change ±10%. 

The cumulative value S is determined by formula (8). 
Individual weight coefficients ak are calculated by solving 2 ͘n 
time’s equation (16). Exemplary weight coefficients ak and 
their share in the cumulated value S is shown below. 
The remaining R contains ak ≤ 0.05. The parameter number 
is given in parentheses: 

e1.4 = 500V 

S 
k

ka = 0.17(a) + 0.20(b) + 0.07(C1) + 0.09(C2) +  

(20a) 0.01(R1) + 0.01(R2) + 0.25(R3) + 0.20(z) = 1.0 


l

laS + R = 0.17(a) + 0.20(b) + 0.079(C1) + 0.09(C2) + 

(20b) 0.25(R3) + 0.20(z) + R = 0.98 + R 

 
Step 3. 

Knowing the weight coefficients ak, it is possible to 
determine matrix A: 
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Step 4.  
For example, for basic parameter e1,4 = 500V in A,B 

and C classes we have the following elements: 
e1,4 = 500V 

(22) A = {a,b,R3,z}, B = {C1,C2}, C = {R1,R2} 

Step 5. 
Using matrix A, we produce curves depicting 

the rearrangement of elements A,B and C sets depending 
on the basic parameter values (Fig. 8). 

Figure 9 shows the results for e1,4 = 500V expressed by 
using the ABC charts and Lorenz curve. 

Figure 10 shows exemplary norm charts ||x||1  
for e1,4 = 500V depending on the assumed parameter 
changes R3,b,a and R2. Analyzing the charts we can notice 

a significant impact of parameter R3 and a marginal impact 
of R2 on the value of objective function Fp = ||x||1. 

 
Fig. 8. Impact of the basic parameter e1 on ak value for different 
parameters given by (18)  
 

 
Fig. 9. The ABC chart and Lorenz curve of the nonlinear state 
equation (16) for e1,4 = 500V [15] 
 

 
Fig. 10. Charts for norm ||x||1 dependent on parameters R3,b a  and 
parameter R2 (e1,4 = 500V) 
 

 
Fig. 11. Impact of parameter R3 (basic) and R2 (marginal) on the 
mean time ts (e1,4 = 500V) [15] 
 

The value of norm ||x||1 depends on
l

lt  of times tl. 

Figure11 illustrates the changes of mean time 
l

l
s

t
t

3
 for 

state variables xl (l = 1,2,3) depending on the assumed 
changes of parameter R3,b,a  and R2, e1,4 = 500V. 
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Comments and Conclusions 
The paper presents a modified Pareto principle for 

the analysis of nonlinear electrical systems described by 
a state equation. The result of the modification is 
a development of a multi-parameter system and original 
algorithmic procedures to test non - linear systems 
described by a nonlinear state equation. This leads to 
a generalized analysis of a nonlinear system’s dynamics 
dependent on basic parameter pb. The ABC bar charts and 
Lorenz curve have been replaced by a matrix model 
providing the same interpretation of the results. 

The two systems described by a nonlinear equation  
of state are analyzed to determine ABC sets of parameters 
having decisive, medium and marginal impacts 
on the dynamics of the system as a result of a detailed 
analysis  
of an example described by equation (2) it was found that: 
for input function E7 = 35, parameters b6, b8, b9, b5 have 
a maximum impact on the dynamics of the system wherein, 
for a6 ≤ 0.89, the system is unstable in the Lapunov sense, 
for the same input function the impact of parameter a3 is 
marginal. 

In the example described by equation (16) parameters 
R3,a,b and z exert a decisive influence on the system. 
Figure 11 shows the impact of R3 (basic) and R2 (minimum) 
on the system’s transient state. 

The relative objective function Fwp used to determine A,B 
and C classes can be defined according to various criteria. 
We can define the function by one of the basic norms 
of the vector [19,22], whose components comprise 
the values  
of state variables in time tl, mean setting time, or time tl  
of a chosen state variable. The actual choice of objective 
function Fp depends on the chosen criterion, or in the further 
proceeding, the selected procedure of system optimization. 

The parameters used in the analyzed examples of multi-
parameter systems were rated parameters, and their 
deviations were ±10%. In the future, another interesting 
aspect of the study will be concerned with procedures for 
creating a generalized dependence of the objective function 
on the parameters of the system using the principles  
of linear programming [5,8,9]. 

The paper however, does not give a thorough stability 
analysis of the nonlinear system (in the sense of Lapunov). 
It is not concerned with optimization procedures 
of the analyzed systems, in which class A parameters 
having a decisive influence on the dynamics of the system 
are used. The issues will be investigated in future research. 
However, the approach shows its originality and possibility 
for studies of nonlinear circuits. 

A detailed literature review presented in this paper 
and in [15] has shown the originality of the author's 
algorithm as well as an innovative application 
of the modified Pareto principle for the analysis of electrical 
circuits modeled by the non-linear state equation. Another 
important aspect of the paper that should be emphasized 
here is the introduction of linear algebra elements that, 
in future, will make it possible to develop a digital filter 
in order to precisely define the elements of ABC sets. 
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