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Estimation method for measurements with heavy-tailed noise 
variance 

 
 

Abstract. The paper presents a new method of signal estimation in systems with measurement channel corrupted by noise which variance is 
random process with heavy-tailed distribution. The noise model provides a description of the wide range of interference occurring in 
telecommunication systems. The proposed estimation algorithm is based on the multi-Gaussian approximation. The results of the simulation tests 
showed high efficiency of the method and its low numerical load. 
 
Streszczenie. W artykule zaproponowano metodę estymacji sygnału w przypadku gdy wariancja szumu pomiarowego opisana jest rozkładem 
gruboogonowym. Rozważany model szumu pozwala na opis szerokiego zakresu zakłóceń pojawiających się w systemach telekomunikacyjnych. 
Proponowana metoda oparta jest na aproksymacji wielogaussowkiej. Wyniki badań symulacyjnych, wykazały wysoką skuteczność proponowanej 
metody i niskie obciążenie numeryczne. – Metoda estymacji w obecności szumu o grubo ogonowym rozkładzie wariancji 
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Introduction 
Electromagnetic disturbances influencing transmission 

channel are common issue in industrial electronics and 
telecommunication systems [1, 2, 3, 4, 5]. Many of the 
arising problems, as for instance: changes of transmission 
channel properties, effects of electromagnetic disturbances, 
fluctuations of reflected radar signal, outlier measurements, 
intended jamming, may be modelled as modification of 
measurement noise parameters [6, 7, 8]. These changes 
has stochastic character and should be described as a 
process with adequate distribution [9, 10, 11, 12, 13] for 
instance: Rice, Rayleigh, t-student, K-distribution, Weibull. 
These are heavy-tailed distributions. As can be seen in 
Fig. 1, where examples of probability density functions (pdf) 
of the mentioned distributions are presented, these 
distributions are characterised by long tails. This feature 
allows to describe wide range of outlier noise values, which 
for example are characteristic effects of electromagnetic 
disturbances. Thus heavy-tails represent the appearance of 
big values of noise variance, exceeding many times the 
mean value. This is clearly seen in Fig. 2. Unfortunately in 
practice, typical linear estimators are usually tuned to mean 
value of noise parameters. Obviously that leads to 
exacerbation of estimation performance. Thus a special 
approach to estimation is needed in such conditions. 

 
Fig.1. Examples of pdf of heavy-tailed distributions 
 

Estimation method may utilise the multi-Gaussian 
approximation approach [6]. Its idea is based on the 
approximation of a given distribution by sum of normal 

distributions. An example of heavy-tailed distribution 
approximation is shown in Fig. 3.  
 

 
Fig.2. Probability of exceeding the x fold xmean value  
 

 
Fig.3. Example of heavy-tailed distribution approximated by set of 
M=10 Gaussian pdfs 
 

Such composition allows to calculate the combined 
estimate as a weighted sum of estimates obtained in filters 
constructed for each Gaussian distribution [6, 7, 14, 15], 
where weights depend on posterior probabilities. This 
suboptimal estimation approach is flexible and allows to 
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construct reliable estimator for wide variety of noise 
stochastic characteristics. 

The scope of the paper is to propose an estimation 
algorithm for condition of heavy-tailed distribution of 
measurement noise variance. The algorithm is designated 
for real time systems. Estimation algorithm is based on 
multi-Gaussian approximation of the distribution. The 
algorithm of adaptive estimator calculates current 
a posteriori probability of the measurement noise variance 
level and uses it for adjusting the filter matrix gain. The idea 
of the proposed method was presented by author in [15] 
and is described in details in next section. Then, the results 
of simulation investigations are presented. 
 
Estimation algorithm 

The most widely used mathematical model of the 
diverse systems has a form of state space description, 
which in case of discrete-time system is the following: 

(1) )(k)w(kG),k)x(k1Φ(k)1x(k w  

where: x(k) is n dimensional state vector, Φ(k+1,k) is the 
transition matrix, w(k) is white Gaussian sequence with zero 
mean and covariance matrix Q(k). 

The measurement process is modelled by the following 
observation equation: 

(2) v(k))k(G)H(k)x(ky(k) v  

where: y(k) is s dimensional vector containing 
measurements,  H(k) is the observation matrix, v(k) is a 
zero mean observation noise with a covariance matrix R(k). 

For problems stated in the introduction, the estimation 
algorithm should take into consideration measurements 
taken in presence of noise with unknown variance 
sequence R(k). A general approach leads to a solution 
where the dynamic system state vector estimate )k/k(x̂  

can be found [6, 14, 16] as a conditional mean of the 
following form: 

(3) ],/)(x[)/(x̂ 11
kk RYkEkk   

where: )}k(y,...,)2(y,)1(y{Y k
1   is the sequence of 

measurements, )}k(R,...,)2(R,)1(R{Rk
1   denotes the 

noise variance sequence. 
Unfortunately, as shown in [6, 14] the optimal solution to 

(3) cannot be implemented in practice, thus some 
suboptimal solution should be utilized. The proposed 
solution is based on the multi-Gaussian approximation of 
heavy-tailed R(k) distribution. In this case the state vector 
estimate (3) may be expressed as the weighted sum of M 
partial estimates corresponding to each Gaussian 
component. Each of these partial estimates can be 
calculated by prediction of the estimates obtained at the 
previous time step. Weights depend on the a posteriori 
probability of validity of certain Gaussian component. The 
idea of the proposed algorithm has the following form: 
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where: )k/k(x̂m  is partial estimate corresponding to the 

m-th Gaussian distribution. The a posteriori probability 

)Y/)k(R)k(R(p k
1m  will be denoted as pm(k). 

Utilizing the above idea to the Kalman filter method, the 
suboptimal estimate )k/k(x̂  can be formulated as 

following: 

(5) )]1k/k(x̂)k(H)k(y[)k(K)1k/k(x̂)k/k(x̂    

where: )1k/k(x̂   is the estimate extrapolation calculated 

in typical way: 

(6) )1k/1k(x̂)1k,k()1k/k(x̂    

and (k)KΣ  is combined gain matrix calculated as weighted 

sum of partial gains )k(Km : 

(7) 



M
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where: pm(k) is a posteriori probability of validity of the  
m-th approximating Gaussian distribution, Km(k) is partial 
gain matrix. 

The partial gain matrix Km(k), which is related to the  
m-th approximating Gaussian distribution, is calculated as 
follows: 

(8)
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where: extrapolation covariance matrix )1k/k(P   is 

calculated in typical way: 
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The estimation covariance matrix P(k/k) should take into 
account information on errors from all M partial estimates, 
which results in the formula: 

(10)
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where: where S(k) is covariance matrix of innovation 

process: )1(k/kz)1z(k/kS(k) T   

A posterior probabilities pm(k) depend on the noise 
stochastic characteristics. When there is no time correlation 
between consecutive R(k) values, pm(k) can be found 
assuming constant a priori probabilities qm(k) which is 
shown by (11). In correlated case the Markov chain 
description should be used [6]. 
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where: m=1, ..., M and 
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denotes the Gaussian probability density function of the predicted 
estimate. 
 



24                                                                              PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 12/2017 

Simulation results 
The performance of the proposed algorithm was 

investigated in simulations with use of Monte Carlo method 
with N=10000 runs performed in Matlab environment. The 
results presented below were carried out for the third-order 
system describing movement of the object. In this case the 
state vector x(k) consists of three components: position, 
velocity and acceleration. The parameters of the equations 
(1) and (2) were assumed as follows: 
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and sampling time Ts=0.1s. w(k) and v(k) were zero mean 
Gaussian noises with variances Q(k)=(0.1)2 and R(k) 
modelled as random variable with Weibull (A=7, B=1.3) or 
log-normal (=3, =2) distribution. M=10 Gaussian 
distributions were used to approximate distribution of R(k) 
variance.  

Fig. 4, 5 and 6 present root mean square error (RMSE) 
of estimation of three components of state vector x(k) in 
case of log-normal distribution of R(k) and Fig. 7 in case of 
Weibull distribution. The performance of the proposed 
algorithm based on multi-Gaussian approximation (MGAF) 
was also compared to the linear Kalman filter with constant 
average R(k) value (KFAR) and with optimal Kalman filter 
(OKF). Estimation in the latter filter is carried out with full 
knowledge of the R(k) instantaneous values, which is of 
course possible in simulations only, but it enables to obtain 
the lower bound of the estimation accuracy. Next estimation 
gain G(k) of the proposed algorithm in comparison to KFAR 
was evaluated. The gain G(k) was defined as following: 
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Fig.4. RMSE of position estimation in a case of log-normal 
distribution of R(k) 
 

Fig. 8, 9, 10 show gain G(k) in a case of log-normal and 
Weibull distribution of R(k) for various number of 
approximating normal distributions M and for some values 
of Q(k) to check properties of filters for different relation of 
R(k)/Q(k). 

As can be seen in the Fig. 4, 5, 6, 7 the proposed 
algorithm reveals good performance. The estimated value 
has smaller RMS error than linear Kalman filter with 

constant average R(k) value. The proposed filter does not 
considerably differ from the optimal filter with known values 
of the noise variances. 
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Fig.5. RMSE of velocity estimation in a case of log-normal 
distribution of R(k) 
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Fig.6. RMSE of acceleration estimation in a case of log-normal 
distribution of R(k) 
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Fig.7. RMSE of position estimation in a case of Weibull distribution 
of R(k) 
 

As it follows from the Fig. 8, 9, 10 the proposed filter 
reveals better performance than traditional KFAR filter. The 
performance gain of the method highly depends on the R(k) 
distribution shape. It increases with increase of relevancy of 
the distribution tail. Relation of R(k)/Q(k) is also meaningful. 
The gain may reach up to 60%. 
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Fig.8. G(k) of estimation in a case of log-normal distribution of R(k) 
for various M 
 

 
Fig.9. G(k) of estimation in a case of log-normal distribution of R(k) 
for M=10 and various Q(k) 
 

 
Fig.10. G(k) of estimation in a case of Weibull distribution of R(k) 
for various M  
 

The number of approximating pdfs also influences 
performance characteristics. Simulation experiments 
revealed that the optimal value of M should be selected 
according to the distribution type and parameters. M should 
be chosen within the range between 3 and 10.  
Conclusions 

The paper presents an adaptive estimation method for 
systems where measurement noise variance is described 
by heavy-tailed distribution. The proposed algorithm is 

derived with use of multi-Gaussian approximation of the 
noise variance distribution. The filter calculates a posteriori 
probability of the measurement noise variance level and 
uses it for adjusting the filter matrix gain. The simulation 
results have shown that the proposed method reveals better 
performance than Kalman filter that applies average value 
of observation noise variance. The performance gain 
increases with increase of relevancy of the distribution tail. 
The proposed filter does not considerably differ from the 
optimal filter.  
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