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unknown stochastic characteristics 

 
 

Abstract. The paper presents a new adaptive algorithms of data processing when observed data are corrupted by pulse interferences 
which cause outliers in measurements. It is assumed that stochastic characteristics of the outliers are unknown. The algorithm is based on 
the nonlinear filtering approach and procedure of on-line calculation of the stochastic characteristics of the outliers described by the Markov 
chains. The simulation results are presented 
 
Streszczenie. W artykule został przedstawiony nowy adaptacyjny algorytm przetwarzania danych zniekształconych zakłóceniami 
impulsowymi które skutkują anomaliami w pomiarach. Algorytm został opracowany z wykorzystaniem metod oceny stochastycznych parametrów 
anomalii opisanych łańcuchami Markowa. Przedstawiono wyniki symulacji. (Adaptacyjne przetwarzanie danych w obecności anomalii o 
nieznanych charakterystykach stochastycznych). 
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Introduction 

The problem of reliable data processing is one of the 
most important in control theory, telecommunications, 
telemetric systems, industrial measurement equipment and 
in other applications. Pulse interferences are the main 
cause of the outliers in observed data which lead to 
significant distortions in the results.  
 The main sources of the outliers in telecommunications 
systems and industrial measurement devices are [1]: 
atmospheric radio noise bursts; industrial and vehicular 
radio frequency pulse interferences; non-controlled phase 
jumps in transmitter and receiver equipment; distortion of 
code words in digital communication channels; intentional 
jamming and some other. 
 Effective data processing algorithms in the presence of 
outliers can be developed using proper statistical 
description of normal and abnormal models of 
measurement noise and estimated data [2]. 
 Usually the probability density function (pdf) of the 
normal measurement noise v can be described by the 

Gaussian pdf ),( 2
vevN  . The pdf of the outlier can be 

completely unknown or can be approximated by the pdf with 
long “tails” (e.g. uniform or Laplace’s pdf). If the statistical 
characteristics of the data stream kx  and measurement 

noise kv  are completely known the Bayes’s approach can 

be used. In a case when the data a priori distributions are 
uncertain but the measurement noise pdf are known the 
maximum likelihood (ML) method is widely used for process 
estimation 
 For the Laplace’s pdf the ML method results to the 
median filters. Such estimates are known as the least 
modulus estimates (LME) [3]. If a priori information 
concerning statistical characteristics of observed processes 
is not available or is not reliable one can use so called 
nonparametric methods of mathematical statistics. They 
include linear combination of the order statistics (so called 
L-estimates) and rank statistics (R-estimates) [4]. P. Huber 
[5] developed the minimax approach to the robust 
estimation of random values based on the influence 
functions introduced by F. Hampel [6]. These estimates 
were called by M-estimates (maximum likelihood estimates 
under non-standard conditions). 
 Considerably less attention was paid to the robust 
estimation of random processes (measurement data) 
observed in presence of noise and outliers. To cope with 

this problem we are using nonlinear filtering approach [2]. In 
this case first of all it is necessary to describe an 
observation model  which depends on a real cause of the 
pulse interferences and a priori statistical characteristics of 
the observed processes.  
 We can present the model of the outliers at the input of 
the digital estimation filter in the following form [2]: 
 

 (1)  )()()()()( kvkkxkHky   

where (k) is the measurement vector, H(k).- the 
observation matrix, x(k) is the data process (the state 
vector), v(k) is the white Gaussian sequences with zero 
mean and covariance matrixes R(k). The outliers in the 
measurement equation can be described by the random 
multiplier (k) which can take on values of 1 when the 
outliers are absent (normal operation) and 1)(  k  

when they arise. 
 A random binary switching function )(k generally can 

consist of correlated values with known or unknown a priori 
statistical characteristics. The models described by the 
equation (1) is typical for digital data transmission in the 
presence of transmission noise and pulse interferences. 
 In practice the probability of switching function (k) is 
unknown and the pulse interferences arise either 
independently at any one instant of discrete time or can be 
correlated. Thus the procedure of data processing in such 
conditions has to be adaptive and includes estimation of 
unknown stochastic characteristics of the switching 
function. 
 In the paper two models of switching function )(k  are  

studied: 1). (k) is independent at any instant of time 
sequence with unknown probability of arising and 2). (k) is 
the Markov sequence with unknown elements of transition 
matrix which describes its stochastic properties. 
 In this paper a new adaptive filtering algorithm robust 
with respect to the pulse interference with unknown 
probability of arising and stochastic properties has been 
developed using the nonlinear filtering approach [2]. 
 
Filtering algorithm based on the nonlinear approach 
 The adaptive filtering algorithm at issue can be designed 
on the basis of nonlinear suboptimal filter developed in [2] 
on the assumption that the probabilities of the outliers 
arising are known. 
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 Let us briefly consider this algorithm. If the outliers are 
absent the state estimates of the linear dynamic system can 
be found using the Kalman filter designed on basis of 
information on system dynamics and observation model [8]. 
 For a linear dynamic system described by the state 
equation  

(2)   kkkkkkk wGxx ,1,11     

and the observation equation 

(3) kkkkk vxHy   

where k =1 in the absence of the outliers and  k >>1 

when the outliers occur. 
 Estimation of the state vector at the output of the 
Kalman filter can be written in the following form [8]: 

(4)  ]ˆ[ˆˆ 1/1//   kkkkkkkkk xHyKxx ) 

where kkx /ˆ  is the filtering estimate, 1/ˆ kkx is the prediction 

estimate: 
(5)   1/11/ ˆ)1,(ˆ   kkkk xkkx  
 

Matrix gain 

(6)   1
1/1/ ][ 
  k

T
kk

T
kkk RHHPHPK  

 

Covariance matrix of predicted errors 

(7)   T
k

T
kkkk GGQPP   1/11/  

 

Covariance matrix of filtering errors 

(8)   1// ][  kkkkk PHKIP  
 In a case when the outliers at the input of the filter occur  
with a priori known probability of arising q the estimation of 
the state vector can be obtained as the weighted sum of the 

partial estimates )(
/ˆ i
kkx  corresponding to presence and 

absence of the outliers in the measurements: 
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The a posterior probability of the measurement channel 

state )/( 1
k

k YiP   depends on the outlier stochastic 

characteristics. If the outliers are statistically independent 
the probability can be found as [2, 7]: 
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 where k
k

k pYP /11 )/1(   is the a posterior probability 

of the outliers absence in the observation which can be 
calculated in real time using current data at the filter input 

based on the pdf ),/( 1
1
 k

kk Yiyf  of predicted estimates. 

 These probabilities kp /1  are used for control of the 

matrix gain of the filter: should be as: 

(11) ]ˆ)([ˆˆ 1/1/11//   kkkkkkkkk xHkyKpxx  
 

The structure of the filter is presented in Fig.1. 
 The matrix gain of the filter depends on the current 
realizations yk  due to the a posterior probability of the 
outliers absence p1/k . It has to be calculated in real time 
according to the following expression: 

(12)  1
/1

 k
T
kkkk RHPK  

 

where covariance matrix can be presented as: 

(13)  
T
kkkkk

kkkkkkkkk

KSKpp

PHKpPP

11/1/1

1/1/11//

)1( 

 
 

where  

(14)  T
kkkkkkkkk xHyxHyS ]ˆ[]ˆ[ 1/1/    

 

is the filter innovation process. 
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Fig.1. Structure of the robust suboptimal filter (RSF) 
 

 Dependence of the filter matrix gain from observations 
in (11) and (13) makes it nonlinear. It can be shown that the 
product kk Kp 1/1  in (11) is an equivalent  to the  Huber 

“influence function”. If the value of the outlier is large then 
the a posterior probability of the measurement cannel state 

kp /1  converges to zero and general matrix gain is equal to 

zero as well, the feedback loop in Fig 1. will be 
disconnected and at the filter output the predicted estimate 
will appear. 
 Calculation of kp /1 according to (10) depends on a priori 

information about probabilities of arising of the outliers 
(pulse interferences). If these probabilities are known and 
outliers are independent at any one instant of time for 
calculation of the value kp /1 in (10) we have to use 

qp k /1 , where q  is known a priori probability of the 

outliers arising. This case is considered in [2]. 
However in practice such a situation is not real. Usually 

probabilities of pulse arising are not known and as a result 
estimates of the data are not optimal. In this paper a new 
adaptive filtering algorithm is developed based on the 
equation (11) and a new procedure of on-line calculation of 
the probabilities q  which determine the value of the a 

posterior probability kp /1 . In the paper two cases are 

considered. The first one deals with independent in time 
outliers with unknown probability of arising q . The second- 

studies the situation with correlated in time outliers. In the 
last case the outliers sequence has been modelled as the 
Markov chain with unknown elements of the transition 
matrix. The derivation of the algorithms are presented in the 
next two sections. 
 

Calculation of probabilities p1/k for independent in time 
outliers 

If probabilities q a priori are not known then they can be 
described as random values with the uniform probability 
density function on the interval [0, 1]. 
For a priori known probability q the a posterior probability 
of the observation channel state can be written as: 
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where ),/( 1
1
 k

kk Yiyf  - conditional PDF for normal 

( 1k ) and abnormal (  k ) measurements. 

 Using the smoothing properties of the conditional 
statistical expectation [9] the a posterior probability of the 
measurement channel state can be found as: 
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where )/( 1
kYqf is a posterior pdf of unknown probability q 

which can be presented in a recurrent form using the 
Bayes’ theorem: 
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with initial condition ]1)]0(/[ yqf  on the interval [0, 1]. 

 The PDF ],/)([ 1
1
kYqkyf in (17) can be written in the 

following equivalent form: 

(18) )]1()()(],/)([ 1
1

1 qkfqkfYqkyf k 
  

 Define ]/[ 1
1
kYqE by 
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then the expression (17) takes the form 
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and the a posterior probability of the measurement channel 
state can be written as the following: 
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Thus the adaptive algorithm for calculation of )/1( kp  uses 

the value )1( kq  instead of a priori known probability q. 

The probabilities )1( kq  are evaluated recurrently 

according to equations (17) - (19). 
 

Calculation of probabilities p1/k  for outliers described 
by Markov chain with unknown transition matrix 

Correlated in time outlier sequences with unknown 
stochastic characteristics can be modelled by the simple 
Markov chain [2]. The elements of the transition matrix are 
unknown and have to be estimated on-line. Estimated 
transition matrix is used for calculation of the a posterior 
probability of the measurement channel state kp /1  as is the 

case in the previous section. 
 It is assumed that elements of the transition matrix Pij  
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do not change on the time observation interval. In fact the 
matrix is defined by only two numbers- p  and 11p . 

Suppose that joint pdf of values p  and 11p  is the 

uniform in the square [0,1]×[0,1]. 
 Then the procedure of calculation p  and 11p  is 

similar to that used in the previous section. Omit details of 
the algorithm derivation. We can present the desired 
algorithm in the following steps: 

1). Calculation of the marginal pdf ]/[ 1
kYpf   and 

]/[ 111
kYpf  with the initial conditions 
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2). Calculation of the expected values ),1),1(  ikpii  
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3). Calculation of the final value of the a posterior 
probability )/1( kp  according to: 

(26) 
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with the initial condition 
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Simulations results 
 As an example let us consider the data process 
described by a scalar state equation  

kkk wxx  1  

where α = 0.9, σ2
w = 4 10-4 and observation equation of the 

following form: 

kkkk vxy   

where σ2
v = 25 10-4, k  = 1 (normal measurements) with 

probability q = 0.8 (not known to the observer) and k  = 10 

(outliers) with probability 0.2. It is assumed that the outliers 
are independent in time. 
 At first suppose that the probability of the outliers arising 
are known (q=0.8). Then the robust suboptimal filter (RSF) 
is described by expressions (11)-(15). The variance of the 
estimation error P(k/k) for RSF is showed in Fig.2 (curve 1). 
For comparison in the same figure the variance of the 
estimation error P(k/k) for the Kalman filter (KF) is 
presented (curve 2). 

As it  follows from the schedules calculation of the a 
posterior probability )/1( kp makes it possible to 

considerably decrease estimation errors of the SRF in 
comparison with the KF. 
 If the a prior probability q is not known in this case the 



 

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 12/2017                                                                              17 

adaptive algorithm can be realized using equations (11) - 
(14) for estimation and equation (21) for calculation of a 
posterior probability p(1/k). Conditional probability density 

function )/( 1
kYqf in (17) can be approximated by discrete 

function of the following form: 

  )()/(
,1

1 j
Nj

j
k qqqYqf  



  

where the number of samples N determines the accuracy of 
approximation. In simulations N was chosen 50. The results 
of simulation are shown in Fig.3. 
 

 
Fig.2. Variances of estimation errors for SRF and KF 
 

 
Fig. 3. Probabilities of the measurement channel state: 1 - )1( kq ,  

2 - )/1( kp , 3 - mq  
 

A typical realization of )1( kq (curve 1) demonstrates 

convergence of the adaptation process to the unknown 
value of pulse interference (q=0.8). Dependence 2 shows 
current values of the a posterior probabilities p(1/k) which 
control the Kalman filter gain. The average values of 

)1( kq  calculated using 100 realization of the input 

measurements are presented in Fig.1 by dependence 3. 
As the additional simulations results show the accuracy 

of estimation of measurements with using probabilities 
calculated on the base of the proposed algorithms (17) – 
(21) and (23)-(27) are practically the same as in a case of 
known q. 
 
Conclusion 
 In the paper the problem of developing the adaptive 
robust algorithms of data processing in industrial 
measurement devices and telecommunication systems 
when observed data are corrupted by pulse interferences of 
unknown probability of arising has been solved. As the base 
structure was chosen the nonlinear filter designed with 
using the Gaussian approximation approach. The unknown 
probability of the interference pulse arising is estimated in 
real time. The estimated value of the probability is used for 
changing the nonlinear filter gain. Due to these changes the 
influence of pulses interferences is eliminated. 
 The proposed algorithm has a recursive structure and 
can be easily implemented on the basis of the DSP 
technology. The results of numerical simulations have 
revealed a high efficiency of the algorithm in measurement 
devices and telecommunication applications. It can be also 
used for fault detection and identification in industrial control 
processes. 
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