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Streszczenie. Zaprezentowano nowy algorytm pomiaru sygnałów okresowych, wykorzystujący podpróbkowanie Σ oraz metodę kompensacji błędów 
pomiarowych, spowodowanych przez wahania częstotliwości za pomocą podpróbkowania Σ - ∆. Wyznaczono charakterystyki filtrów cyfrowych, 
realizujących ten algorytm. Przeanalizowano zależność błędów pomiarowych od krotności podpróbkowania, liczby próbek, błędów częstotliwości 
oraz mocy zakłóceń na przykładzie typowych przebiegów okresowych. Nowy algorytm pomiaru sygnałów okresowych, wykorzystujący 
podpróbkowanie Σ oraz metodę kompensacji błędów pomiarowych 
 
Abstract. New algorithm of the measurement of periodical signals, utilizing the sigma undersampling and a method of a compensation of the errors 
arising from frequency fluctuations basing on Σ - ∆ undersampling are presented. Characteristics of FIR filters realizing this algorithm are calculated. 
An analysis of the dependence of the errors on the undersampling factor, the number of the samples per period, a power of the noise and 
fluctuations of the frequency is performed for typical periodical signals. 
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Introduction 
Present-day digital signal processors (DSP) enable their 

applications in wider range of measurements. However in 
very high frequency applications the undersampling, i.e. the 
sampling of the measured signal using the sampling 
frequency lower than Nyquist's frequency, can be more 
profitable than the standard sampling [1-5]. Especially, the 
sigma undersampling, when the measured signal is 
integrated before the sampling, can reduce an influence of 
a noise for measurements of small signals. It is obvious, 
that a degree of this reduction increases proportionally to 
the extension of the time of the integration on the condition, 
that expected value of the noise equals 0. 

The method reducing the influence of the fluctuations of 
the frequency basing on sigma undersampling was worked 
out earlier [6-7]. The significant reduction of the errors was 
achieved however the digital data processing system was 
characterized by one inconvenience - a nonlinear element, 
calculating the geometrical mean value of DFTs of particu-
lar series of the results of the measurement. An elimination 
of this attribute and a creation of the less complicated 
algorithm of the signal processing is a purpose of this work. 

 

Sigma undersampling 
Every periodical signal x0(t) of a frequency f0 can be 

expressed in the form of Fourier’s series.  
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where X0 is the mean value of the signal and Xm and φm are 
the amplitude and the phase of its mth harmonic, 
respectively. 

To apply the sigma undersampling, the signal must be 
integrated during the sampling period Td0, according to 
following condition [1-5] 

 

(2)                              11
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where M is the undersampling factor and N - the number of 
samples per period.  
 When the measured signal is integrated, the spectrum 
of the output signal of the integrator y(t) is similar to the 
spectrum of the signal x0(t) [6-7]. 

(3)  
     

 m
m

m

Tt

Tt

tmfmM
N

m

m

Xf

fN

MNX
dttxty

d

d










 





















0
1

1
0

2/

2/ 0

0

2cossin

10

0  

A comparison of (1) and (3) leads to the conclusion, that 
the samples of the original signal x0(k) are strictly connected 
with the values of the integrals y(k). Therefore they can be 
obtained at the output of the NOI filter, which transfer 
function HΣ(f) satisfies the following condition [6-7] 

(4)                        0000 mfYmfHmfX   , 

where X0(f) and Y(f) are the spectra of the signals x0(t) and 
y(t), respectively. 
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 The coefficients hΣ(k) can be calculated by means of 
Inverse Discrete Fourier's Transform of the transfer function 
of the filter. 
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When the frequencies of the signal and the sampling 
generator fluctuate, the signal x0(t) is sampled in different 
phases in the subsequent periods. Therefore the ideal 
values of the sampling period Td0 and the frequency f0 are 
replaced by the real values Td and f [6-8]. 
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δf and δTd are the relative variations of the sampling period 
and the frequency of the signal, respectively. 
 After the undersampling and the filtering the value of kth 
sample of the measured signal can be expressed as 
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where 
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Δφ1 is the difference between the phases of 1st harmonics of 
the ideal signal x0(t) and the real signal x(t). 
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 The inaccuracy of the sigma undersampling arises from 
these phase errors. It is obvious that the errors of the 
measurement of the signal increase for higher numbers of 
samples. This effect can be limited, when the 
undersampling is repeated multiply and when it starts from 
different phases of the measured signal for every set of N 
samples. One should also notice, that the phase errors for 
the undersampling are (N·M+1) times greater than the 
errors during the usual sampling. The formula (10) makes 
possible to estimate the ranges of N and M, when the 
undersampling gives acceptable results. For typical 
frequency stability in range of 10-6 the phase error for N-th 
sample of the 1st harmonic should be less than 1º. This 
condition is fulfilled when N·M< 1400 
 Using the trigonometric formula (9) can be expressed as 
(11)
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The second component in (9) is the corrective one. Its 
value is proportional to a derivative of the measured signal. 

 

Sigma-delta undersampling 
The derivative of the signal x0(t) is expressed by 

following formula 
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A signal proportional to the derivative of the signal x0(t) 
can be obtained by means of the sigma-delta 
undersampling [8-14], basing on the subtraction of 2 
succeeding integrals, according to 

(13)
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 Analogically as in the case of the sigma undersampling, 
the samples of the derivative of the measured signal can be 
obtained as the output signal of the FIR digital filter, which 
transfer function HΔ(f) satisfies the following condition 
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where X1(f) and Y0(f) are the spectra of the derivative of the 
signal x0(t) and y0(t), respectively. This transfer function can 
be calculated using IDFT of HΔ(m) 
 

(15)                     





 

1

1

N

n

nznhzH  

(16)             

   














 










 



12

1 2

2

2
0

2

2
0

22

22
sin

2
cos

2

44
sin

1

N

m

n

N

mmM
N

mn
m

f

NM
fN

nh










. 

 Analogically as in the case of the sigma undersampling 
the fluctuations of the frequencies should be taken into 
considerations. Basing on (7) and (8) the values of the 
samples of the derivative of the signal can be expressed as 

(17)
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where x'(k) denotes a derivative of the signal x(t) for t= k·Td. 
Formulas (11) and (17) enable a creation of the signal 
processing algorithm. 
 

Algorithm of signal processing 
According to (3)-(6) and (11)-(17) the algorithm of the 

signal processing can be formulated. The purpose of this 
algorithm is the maximum reduction of the influence of the 
frequency fluctuations on the results of the measurements 
and the accurate reconstruction of the signal x0(t) basing on 
the values of the integrals. The integral (3) can be divided 
into 2 integrals: from t-Td0/2 to t and from t to t+Td0/2. The 
sum of these integrals gives the value proportional to the 
sample of the signal x(k), whereas the difference - the value 
of the sample of the derivative of this signal. The values of 
the signal and its derivative are obtained on the outputs of 
the filters HΣ and HΔ. 

Since the fluctuations of both frequencies are in range 
of 10-6, the values of phase errors are close to 0. Therefore 
formulas (11) and (17) can be expressed approximately: 
 

(18)                   kxMNmkkxkx  010 1   

(19)                  kxMNmkkxkx 010 1   , 
 

where x0'(k) denotes a derivative of the signal x0(t) at the 
moment k. A solution of these equations enables the 
calculations of the values x0(k) and x0'(k) on the condition 
that Δφ1 is known. 
 The value of the error Δφ1 can be obtained basing on 2 
first values of the 1st harmonic of the measured signal. They 
can be separated using FFT and IFFT. The values of the 1st 
harmonic x1(k) and its derivative x1'(k) for k=0 are equal: 
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whereas for k=1: 
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 The solution of the set of the equations (21)-(24) 
enables calculations of all parameters necessary to the 
creation of the signal processing algorithm. 
 

Results of simulations 
The estimation of the accuracy of the method described 

above was performed using the simulation in MATLAB. 
Calculations were made separately for every harmonic and 
they were repeated P=106 times. The fluctuations of the 
frequency of the signal and the sampling period were 
random values described by Gaussian distribution with 
variance δf (the frequency of the input signal) or δTd (the 
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sampling period) and mean value 0. Gaussian noise of the 
mean value 0 and the variance σ was added to the output 
signal as the simulation of the errors of the deceiver. The 
undersampling factor M, the number of the samples per 
period N and the signal to noise ratio, defined as 
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are the parameters of the simulations. 
The error δ, defined as 
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was chosen as a criterion of the preciseness of the method. 
The results of the simulations are presented in Figs. 1-10. 
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Fig. 1. Dependence of error δ on m  and M, N = 256, 1/SNR = 0,1, δf 
= δTd= 10-6 
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Fig. 2. Dependence of error δ on m and N, M = 100 , 1/SNR = 0,1, δf 
= δTd= 10-6 
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Fig.3. Dependence of error δ for 1st harmonic on N  and 1/SNR, 
M=100, δf = δTd= 10-6 
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Fig. 4 Dependence of error δ for 5th harmonic on N  and 1/SNR, 
M=100, δf = δTd= 10-6 
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Fig.5. Dependence of error δ for 1st harmonic on M  and 1/SNR, 
N=256, δf = δTd= 10-6 

0
50

100
150

200

0
0.05

0.1
0.15

0.2
0

0.05

0.1

0.15

0.2

M1/SNR

de
lta

 
Fig.6. Dependence of error δ for 5th harmonic on M  and 1/SNR, 
N=256, δf = δTd= 10-6 
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Fig. 7. Dependence of error δ for 1st harmonic on N  and M, 
1/SNR=0,1, δf = δTd= 10-6 
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Fig. 8. Dependence of error δ for 5th harmonic on N  and M, 
1/SNR=0.1, δf = δTd= 10-6 
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Fig. 9. Dependence of error δ for 1st harmonic on δf and δTd , N  
=256, M =100, 1/SNR=0,1 
 

The simulation of the method was also performed for an 
exemplary periodical signal. The triangular signal x0(t) with 
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the mean value 0 was chosen. In this case the conditions of 
the calculations were identical as previously with 2 
exceptions. For the triangular signal SNR should be defined 
as 
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where x0max is the amplitude of the triangle, whereas the 
accuracy of the method is estimated by means of the error 
δ1. 
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 The results of the simulation for the triangular 
signal are presented in Figs. 11-16. 
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Fig. 10. Dependence of error δ for 5th harmonic on δf and δTd , N  
=256, M =100, 1/SNR=0,1 
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Fig. 11. Dependence of error δ1 on δf and δTd for triangular signal, 
N  =256, M = 100, 1/SNR=0  
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Fig. 12. Dependence of error δ1 on δf and δTd for triangular signal, 
N  =256, M = 100, 1/SNR=0,1 
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Fig. 13. Dependence of error δ1 on N and M for triangular signal, δf 
= δTd= 10-6, 1/SNR=0 
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Fig. 14. Dependence of error δ1 on N and M for triangular signal, δf 
= δTd= 10-6, 1/SNR=0,1 
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Fig. 15. Dependence of error δ1 on N and 1/SNR, for triangular 
signal, M = 100, δf = δTd= 10-6 
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Fig. 16. Dependence of error δ1 on M and 1/SNR, for triangular 
signal, N = 256, δf = δTd= 10-6 
 
Conclusions 

Presented results of the simulations both for particular 
harmonics of the measured signal, as well for the triangular 
signal prove, that the sigma undersampling connected to 
the sigma-delta undersampling can be the effective method 
of the measurement of periodical signals. Properly selected 
NOI filters in cooperation with sampling system enable 
calculations of the corrective components reducing the 
errors, arising from the variations of the frequency well as 
the noise of the detectors of the signal. 

The most important advantage of presented algorithm is 
the possibility of its application to the measurements of low 
level signals. 

A comparison of this algorithm to the algorithm worked 
out earlier [6-8] reveals an advantage of the new solution, 
consisting in its simplicity, the easier application, the 
absence of nonlinear elements and less values of the 
errors. 
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