Jan SIKORA'?, Krzysztof POLAKOWSKI? Beata PANCZYK'

Lublin University of Technology (1), Warsaw University of Technology (2), Electrotechnical Institute in Warsaw (3)

doi:10.15199/48.2017.11.37

Numerical calculation of singular integrals for different
formulations of Boundary Element

Abstract. This paper presents a method of regularization for the numerical calculation of singular integrals used in different formulations of Boundary
Element Method. The singular integrals arise when elements of order higher than zero are used for discretization. Very often in the Diffusive Optical
Tomography for infant head modeling, triangular or square curvilinear boundary elements of the second order are used hence, our interest in the
subject of effective and accurate calculation of singular integrals. Even for the classical formulation of BEM such a problem is extremely difficult.
Some authors believe that the practical application possesses only flat triangular boundary elements of zero-order, and although there is some truth
in this statement, Diffusion Optical Tomography elements of the second order show a significant advantage. This issue becomes even more
interesting when we deal with the Galerkin BEM formulation offering the possibility of symmetrisation of the main matrix, which has fundamental
importance for inverse problems. This matter becomes critical when we start to consider the Fourier BEM formulation, introduced by Duddeck. His
approach provides the possibility of a solution in the case that there is no fundamental solution. The light propagation, which is described by the
Boltzmann equation is such a case. Currently and most commonly, the Boltzman equation is approximated by the diffusion equation in strongly light
scattering media. In the authors opinion, the problem of numerical integration of singular integrals has not yet been fully exhausted in the classic
and Galerkin BEM formulation but the Fourier BEM formulation still expects the proposals of the solutions. Such an offer we would like to present in
this paper

Streszczenie. W artykule przedstawiono metode regularyzacji numerycznego obliczania catek osobliwych stosowanych w réznych rozwigzaniach
Metody Elementu Brzegowego. Catki osobliwe powstajg, gdy do dyskretyzacji zostang uzyte elementy wyzszego rzedu niz zero. Bardzo czesto w
dyfuzyjnej tomografii optycznej uzytej do modelowania gtowy dziecka uzywa sie trojkatnych lub kwadratowych krzywoliniowych elementéw
brzegowych drugiego rzedu i dlatego nasze zainteresowanie dotyczy tematu skutecznego i doktadnego obliczenia catek osobliwych. Nawet w
przypadku klasycznego sformutowania MEB ten problem jest wyjatkowo trudny. Niektérzy autorzy uwazajg, ze praktyczne zastosowanie majg tylko
ptaskie trojkgtne elementy brzegowe zerowego rzedu i chociaz w tym stwierdzeniu jest troche prawdy, to dyfuzyjna tomografia optyczna stosujgc
elementy brzegowe drugiego rzedu wykazuje znaczacg przewage. Kwestia ta staje sie jeszcze bardziej interesujgca, gdy mamy do czynienia ze
sformutowaniem Galerkina MEB, oferujgcym mozliwo$¢ uzycia symetrycznej macierzy wspoéiczynnikéw, ktéra ma fundamentalne znaczenie przy
rozwiazywaniu probleméw odwrotnych. Ta kwestia staje sie krytyczna, gdy zastosujemy sformutowanie Fouriera w MEB, wprowadzong przez
Duddecka. Jego podejscie daje szanse rozwigzania w przypadku braku rozwigzania fundamentalnego. Rozchodzenie $wiatta, opisane przez
réwnanie Boltzmanna jest takim przypadkiem. Obecnie, réwnanie Boltzmana jest przyblizane réwnaniem dyfuzji w o$rodkach silnie rozpraszajgcych
Swiatto. W opinii autoréw, problem numerycznego catkowania catek osobliwych nie zostat w petni wyczerpany w klasycznej formule MEB i dla
sformutowania Galerkina, ale formuta MEB Fouriera nadal oczekuje nowych rozwigzan. Propozycje takiego rozwigzania chcieliby$my
zaprezentowac¢ w tym artykule. Metode regularyzacji numerycznego obliczania catek osobliwych stosowanych w réznych rozwigzaniach
Metody Elementu Brzegowego
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Introduction Integrated _ fields. wave
In the field of digital modeling, two methods are used at Engineering Windows only thermal analysis
present: the Finite Element Method (FEM) and the Software _
Boundary Element Method (BEM). The latter is less GPBEST Windows or Unix | acoustics, thermal
common since there is much less the professional computer - - analysis -
Concept Analysis Windows stress analysis

software that uses the BEM compared to FEM.

For a few decades rapid development of BEM can be
observed [1, 5-7,9-12,14,15] resulting in an increase in
BEM’s application over time to, among other things,
electromagnetic, thermal, and optical analysis [1, 5-7, 11].
Nevertheless it is not easy to find ready-to-use BEM
implementations. The situation becomes even more difficult

It appears that industrial and scientific groups would like
to have a well-designed platform for BEM calculations
which should be universal but at the same time have
modularity that easily enables application [8,14, 15].

Table 2. Free software implementing BEM [8,14, 15].

if we try to find free open source software and worse still if Library Language Distribution Application
ol ; conditions
we need specialized BEM software applicable, for example, T
tﬁ' Diffusion .Optlcall Tqm%graplh)rq. OtTe o;‘] the reaslonts wh); ABEM (by Fortran commercial, Laplace and
F is stgte is ma!ntalne I mig t' e the comp exity o Kirkup) open source Helmholz
integration (in particular singular integrals) which needs to problems
be done using BEM calculations. Of course, this is not a LibB semi- Laplace
problem which cannot be overcome [12,14,15]. The need foBem commercial equation
for the BEM calculations software exists and is Laplace,
unquestionable, but it has been only insignificantly BEMLIB Fortran GPL Helmholtz
implemented (Table 1 [10,11,12]). The other software (Pozrikidis) equations and
packages for Boundary Element Methods is listed in Tab. 1. ; Stfkels flow
It is worth emphasizing that by no means the list is not BIEPACK Fortran rzgu?EZ” e;j’a?i%i
complete. —
BEA Fortran D'StnbUted acoustics
. . . with the book
Table 1. Commercial software implementing BEM [11,12]. copyright © Galerkin BEM
Library Environment Application 2007 Matthias for Laplace,
(programme) (language) i MaiProgs [8] Fortran Maischak. Helmholtz,
BEASY Windows or Unix Construction Designed by Lamé and
engineering Free CSS Stokes
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Templates All equations
templates are
licensed under
the Creative
Commons
Attribution 3.0
license
Laplace,
HyENA rovided Helmholtz and
(Hyperbolic P Lamé equations
and Elliptic under the in 2D and 3D
) C++ GNU Lesser :
Numerical ] using the
; General Public .
Analysis License Galerkin or
[16]) collocation
approaches.
BETL
Eloment’ Laplace,
BETL is free Helmholtz and
Template )
Library for acadgmlc ngwgll
) . C++ use in equations in 3D
[Hiptmair .
. research and using the
and Kielhorn ; )
X teaching Galerkin
2012, approach
Kielhorn pp ’
2012])
Laplace,
Helmholtz and
C++ Maxwell
BEM++ [13] Phyton open-source problems in
three space
dimensions.

The plan of this article is as follows. In section 2, a
review of the foundations of boundary element methods and
standard methods for integration of singular integrals is
presented. Section 3 is devoted to a presentation of the
major features of Numerical integration for Galerkin
formulation of Boundary Element Method (GBEM) in 2D
space only. The practical use of Fourier Boundary Element
Method (FBEM) and numerical integration is demonstrated
in section 4. Finally, in section 5, we discuss plans for
further directions of our research.

A. Standard 3D Boundary Element Method and
numerical integration of singular integrals

Let us consider Poisson’s equation in three—dimensional
space:

(1) Vi(r) =b,
where @ stands for the arbitrary potential function for
temperature or electric potential.

On the surface I of the volume under consideration

Q , the Robin boundary conditions are imposed:
oD(r

on
where mr and ng are known coefficients for the Robin

boundary condition [2].
The fundamental solution for 3D space is:

1

3 r—rl)=—

® 6(r-r) =1
where R = |r — r'| is a distance between r (the source point)
and r' (the field point).

The integral form for the Eq. (1) is:

6 (-

c(r)®(r)+ | — (I =
r

=myD(r)+ Ny

4)
=J.G(|r—r'|)%dl"(r')+jb6 (|r—r'|)dQ(r')

When the distance between the source point and the

element over which the integration is performed is
sufficiently large relative to the element size, the standard
Gauss-Legendre quadrature formula works efficiently. But
when the distance tends to zero then integrals become
singular and special integration strategy should be applied.
Let us consider quadrilateral boundary elements. The
strategy used for integration rectangular boundary elements
is as follows: mapping them at first onto 2D curvilinear
coordinates and then dividing them into two or three
triangles and subsequently onto the standardized square.
The whole procedure is shown in Fig. 1.
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Fig. 1. Local coordinates of the quadrilateral boundary element and
a mapping strategy [12].

Finally, in all the above cases the Gauss — Legendre
method of numerical integration was used [4]. The
coordinates of the numerical integration points and the
weights are available in the literature or in the internet, for
example, [4,12].

Fourier Boundary Element Method
numerical integration

Let us briefly introduce some elements of basics of
Fourier approach to BEM [5].

To obtain the Fourier transform of the Galerkin BEM, all
quantities have to be extended from domain Q to the space

R". This can be achieved by defining a cutoff distribution y

[5], multiplying all quantities by y and finally transforming
the quantities into Fourier space.

(FBEM) and

F(u)=u, uel (R"), i=+-1
The n-dimension Fourier transform is defined as:
(5) (%)= [u(x) e *Vdx,
Rﬂ
(6) (%,R)=>"%%,.
k=1

The discretized Fourier BEM leads to an algebraic
system identical to that obtained in the original space:
@ Y KU =FJ+Y H't' -> Gl
i i i
where now, the matrices and vectors are computed in
the transformed space:

F) = (1(-9), £ (%)U (%),

(27)

®)
Gl =
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The meaning of the ~ 't and Pu (X) in the equations (8)

is the following one:
At =V (where: V, v - the gradient and the outer
unit normal) is the boundary operator transformed to

A

At in the Fourier space,

. Pu (%) is the transformed polynomial trial functions.

The main advantage of the FBEM is that the integrals
extend formally over the entire R, and therefore the Fourier
transformation can be applied to these integral equation.

A. Numerical example

The Fourier formulation of BEM is only presented for the
boundary integral equations limited to constant elements
and 2D space (Fig. 2). As the test example, the Dirichlet
problem of the Poisson equation is considered:

u(x)=u. =0,

9) AuXx)=—F(x), xeQ xerl.

1 2 3 4 X,

Fig. 3. Function RZ space.

The Dirichlet problem is solved in a quadratic two-
dimensional domain Q [0, 1]x[0, 1]. At the boundaries, u=0
is imposed. The interior is subjected to stationary heat
source f. The boundary T is divided into 16 elements. In our
case when the source function f=1 the exemplary entries
are:

H =L (@] (-2). 07 (%)U (8) =

B. The integration in R’ space
The integrand (see Eq. (10)) has a singularity along the

axis of the coordinate system X1 X, as it is shown in Fig.
3. Therefore, in order to successfully |ntegrate such a
function numerically, we divide the space R? into four
quarters in accordance with Fig. 4.

After dividing the area into four infinite subareas and
unifying the limits of integration (for easier algorithmization)
we have:

T T f(x, x,)dx,dx,=

—00 —00

“ f (X, X,)dX, dx2+J'J' f(x,,x,)dx dx,+

0 -0
+JQ ,T f(xlaxz)dxldxz+.[.[f(xlaxz)dxldXZZ
o -0 0

(11)

S ey 8

f(x, xz)dxldx2+” f (=X, X, )dx,dx,+
00

+

0
” f (—xl,—xz)dxldx2+” f(x,,—X,)dxdx,
00 00

Every subarea was transformed into a local coordinate

system using the transformation T (the same for both X

and %, coordinates):

(12) X(éz)ziz
(1-¢)
where ¢ is the local coordinate.
Unfortunately, such transformation introduced an

oscillatory behavior of the function near to the boundary

(Fig. 5). That will demand a very careful numerical
integration.
After the transformation, the integral in the local

coordinate system over each boundary element is equal to:

@3 1= [ £(x(£):%(&)) IE)IE) d&dé,

where: f means any functlon and
2
x 1+&
J(&) = u

0 (1-g)

is the Jacobian of transformation.

(14)
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To achieve a satisfactory precision of integration the 80
integration points were used (see Fig. 6). _
&

-0
Fig. 4. One of the quarter after mapping into the square.

Fig. 5. Function after mapping into square.
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Fig. 6. For numerical calculation - the 80 integration points were
used.

Table 3. Comparison between exact and numerical integration

st | Nmereal | e aror
0.166736 0.166059 0.41
0.336249 0.343520 2.16
0.336249 0.343520 2.16
0.166736 0.166059 0.41

In the table 3 results of numerical calculations are
presented for the region and it discretization shown in Fig.
2. As we can see the discretization is not particularly dense
— only 16 elements. As an exact solution, the analytical
integration was treated (see Table 3).

Conclusion

This paper presents the regularization method for the
integration of singular integrals for three different
formulations of BEM: classical, Galerkin’s and Fourier. With
the help of numerical experimentation the effectiveness of
the proposed method of integration was proven.
Additionally, the authors tried to demonstrate that the
degree of difficulty increases in the direction from the
classical to the Fourier approach.

A very interesting formulation of the BEM was presented
by Duddeck in his monograph [5], however the problem of
integration was not looked into thoroughly. One of the main
goals of this paper was to address this gap. Without
effective numerical integration the Fourier approach to BEM
becomes useless.

The authors believe that the Fourier's formulation holds
great potential, in particular for the Diffusion Optical
Tomography. The light propagates in accordance with the
Boltzman equation [2]. The Boltzman equation does not
have a fundamental solution. Therefore classical
formulation of BEM becomes useless. Usually in case of
environments strongly dissipative the Boltzmann equation is
approximated by the diffusion equation [2, 12].

The authors are aware that this work on numerical

integration particularly in the R2 space still require further
work in order to improve the accuracy and reduce the
number of integration points. This will be a critical issue for
real discretization with the aid of thousands of boundary
elements.
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