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Positive linear systems and electrical circuits with inverse state
matrices

Abstract. The positive linear systems and electrical circuits with inverse state matrices are addressed. It is shown that: 1) If the eigenvalues of
asymptotically stable matrix A<M, are located outside the unit circle then the eigenvalues of asymptotically stable matrix — Al e‘RQX” are
positive and located inside the unit circle; 2) If the eigenvalues of asymptotically stable matrix Ae SRQX” are positive and located inside the unit
circle then the eigenvalues of the matrix — Ale M, are located in the left half plane outside the unit circle. A new problem concerning the
discretization of positive linear systems and electrical circuits is formulated and solved.

Streszczenie. W pracy przedstawiono dodatnie ukfady liniowe i obwody elektryczne z odwrotnoscig macierzy stanu. Zostato pokazane ze: 1) Jezeli
warto$ci wfasne asymptotycznie stabilnej macierzy AeM, sg ulokowane poza obszarem kota jednostkowego wtedy warto$ci wtasne
asymptotycznie stabilnej macierzy — A e‘RQX” sg dodatnie i lezg wewnatrz kota jednostkowego, 2) Jezeli warto$ci witasne asymptotycznie
stabilnej macierzy AeSRﬂX” sg dodatnie i lezg wewnatrz kota jednostkowego wtedy wartoSci wtasne macierzy -Ale M, lezg w lewej
potptaszczyznie poza obszarem kota jednostkowego. Sformutowany zostanie nowy problem dotyczgcy dyskretyzacji dodatnich uktadéw liniowych

oraz obwodéw elektrycznych. (Dodatnie uktady liniowe i obwody elektryczne z odwrotnos$cig macierzy stanu).
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Introduction

A dynamical system is called positive if its trajectory
starting from any nonnegative initial state remains forever in
the positive orthant for all nonnegative inputs. An overview
of state of the art in positive systems theory is given in
monographs [2, 10]. Variety of models having positive
behavior can be found in engineering, especially in
electrical circuits [20], economics, social sciences, biology
and medicine, etc. [2, 10].

The positive electrical circuits have been analyzed in [4-
9, 11, 13]. The constructability and observability of standard
and positive electrical circuits has been addressed in [5],
the decoupling zeros in [6] and minimal-phase positive
electrical circuits in [8]. A new class of normal positive linear
electrical circuits has been introduced in [9]. Positive
fractional linear electrical circuits have been investigated in
[11], positive linear systems with different fractional orders
in [14, 15] and positive unstable electrical circuits in [16].
Zeroing of state variables in descriptor electrical circuits has
been addressed in [19] and the realization problem of
positive linear systems in [1]. Determinants of the matrices
of solutions to the standard and positive linear electrical
circuits have been addressed in [7] and positive electrical
circuits with zero transfer matrices in [12].

In this paper the positive linear systems and electrical
circuits with inverse state matrices will be addressed.

The paper is organized as follows. In section 2 some
definitions and theorems concerning linear positive systems
and matrix functions are recalled. The relationship between
stability of positive continuous-time and discrete-time linear
systems is addressed in section 3. Discretization of
continuous-time positive linear systems is analyzed and
new problem and its solution are presented in section 4.
The new problem is illustrated on positive electrical circuits
in section 5. Concluding remarks are given in section 6.

The following notation will be used: R - the set of real
numbers, R™™ - the set of Nnxm real matrices, RT™ -
the set of nxm real matrices with nonnegative entries and
RT =RPL, M, - the set of nxn Metzler matrices (real
matrices with nonnegative off-diagonal entries), 1, - the
nxn identity matrix, AT denotes the transpose of the
matrix A.

Preliminaries

Consider the continuous-time linear system

(1) X = Ax+ Bu,

where x=x(t)eR", u=ut)eR™ are the state and
input vectors and Ae R, Be R™™ .

Definition 1. [2, 10] The continuous-time linear system (1)
is called (internally) positive if x(t) e R, t>0 for any
initial conditions x(0) e k" and all inputs u(t) e RT,
t>0.

Theorem 1. [2, 10] The continuous-time linear system (1) is
positive if and only if

2) AeM,, BeRrP™,

Definition 2. [2, 10] The positive continuous-time system
(1) for u(t) =0 is called asymptotically stable if

(3) lim x(t)=0 for any x(0) € R".
t—o

Theorem 2. [2, 10] The positive continuous-time linear
system (1) for u(t) = 0 is asymptotically stable if and only if
one of the following equivalent conditions is satisfied:

1) All coefficient of the characteristic polynomial

@) pp(s)=det[l,;5s—Al=s"+a, ;s" ! +..+a;s+a,

are positive, i.e. aj >0 for i =0,1,...n—1.
2) There exists strictly positive vector
AT =14 AnlT . 2 >0, k=1,...,n such that

(5) ALl<0.

If the matrix A is nonsingular then we can choose
A=A""c, where ceR" is strictly positive.
Consider the discrete-time linear system

(6) Xiy = AXi + BUi ,le Z+ ={0,L...},

PRZEGLAD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 11/2017 119



where x; e R", u; eR™ are the state and input vectors
and AcR™", BeR™™.

Definition 3. [2, 10] The discrete-time linear system (6) is
called (internally) positive if x; € SRE ieZ, for any initial
conditions X € ‘.RQ and all inputs u; e RT, ieZ, .
Theorem 3. [2, 10] The discrete-time linear system (6) is
positive if and only if

(7) AeRT" BerT™.

Definition 4. [2, 10] The positive discrete-time system (6)
for u; =0 is called asymptotically stable if

(8) lim x; =0 forany x, € RY.
|—00

Theorem 4. [2, 10] The positive discrete-time linear system
(6) for u; =0 is asymptotically stable if and only if one of
the following equivalent conditions is satisfied:

1) All coefficient of the characteristic polynomial

9) pp(2) =det[1,(z+1) - A]=2" +a,_;z" " +.. +az+a,

are positive, i.e. 8; >0 for i =0,1,...,n—1.

2) There exists strictly positive vector
AT =14 1T A >0, k=1,..,n such that
(10) (A-1)4<0.

If the matrix (A—1,) is nonsingular then we can

choose A=(A—1,)"'c, where ceR" is strictly

positive.
Consider a matrix AeR™" with the minimal
characteristic polynomial
1) YA=A-D"MA-)™ (A=),

where 4, 4y, ..., A, are the eigenvalues of the matrix A

r

and Y m; =m<n. Itis assumed that the function f(1) is
i=1

well-defined on the spectrum o ={4,4,....,4,} of the

matrix A, i.e.

5 dF D)
f(4), £ (&) TR z:zkm
(12) _
f<mk‘1>(/1k)=dmk—lf(/l) k=1,..r
dm |,

are finite [3, 18].
In this case the matrix f(A) is well-defined and it is given
by the Lagrange-Sylvester formula [3, 18]

(13) F(A) = . Ziy T () + Zin f D) ot Zi, T ™D
i=1

where
m—1 . gk k=4
19 z5- 'S Wi(AYA- il) dk -1{ 1 }
k=j-1 (k= Jj+DI(G-D! da* I | (D) A=1,
and

T ) P O F

15 :
o (A=2)™

In particular case where the eigenvalues 4, 4, ..., 4, of

the matrix A are distinct (4; # 4, i#]j)and
(16) P(A) =YD =A-)A-1)..(A-2),

then the formula (13) has the form

n
F(A) = 22k (4

(17)
k=1
where
nA- Al
(18)  Zy=[]—"-"
i-1 Ak — i
izk

Theorem 5. Let f (1) be well-defined on the spectrum o p

of the matrix Ae R™" [ If 4, k =1,...,n is the eigenvalue
of the matrix A then f(4), k=1,...,n are the eigenvalues

of the matrix f(A)e R™" .

Proof. The proof is given in [3, 18].
In particular cases from Theorem 5 we have the following
corollaries.

Corollary 1. If 4, k=1,.,n are the eigenvalues of the
nonsingular matrix Ae R™" then 4!, k=1,..n are the

eigenvalues of the inverse matrix Al
Corollary 2. If A4, k=1..,n are the eigenvalues of the

matrix Ae R™" then -4, k =1,...n are the eigenvalues
of the matrix —A.

Relationship between stability of continuous-time and
discrete-time positive linear systems

In this section the relationship between asymptotic
stability of continuous-time and corresponding discrete-time
positive linear systems will be investigated.
Theorem 6. If the eigenvalues of asymptotically stable
matrix A€ M, are located outside the unit circle then the
eigenvalues of asymptotically stable matrix — Ale SRE‘rxn
are positive and located inside the unit circle.
Proof. First using the induction method we shall show that if

A e M, is asymptotically stable then — Al e ‘Rﬂxn .
The hypothesis is true for n=1 since A=[a;;]€M; and

a;1 <0 . The hypothesis is also true for n =2 since for
a, a

(19) A2 :{ 1 12i|€M2
a1 ax

asymptotically stable we have

1 -a a
|: 22 12 }emzxn
ardy —apdy | 81—y

-1 _
-A =

(20)
since dj1dyy —Qppdny > 0.

Assuming that the hypothesis is true for n—1 we shall show
that it is also valid for n=23,....
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It is easy to check that if the matrix A, has the form

An—l Up
(21) A, = ,
Von  app
an
_ an
Uy = . Vnp=[an an2 an,n-1]
8n—1,n

then its inverse is given by

-1 -1 -1
An—lunVn An—l _ An—lun

-1
Anr+
220 A= &n &,
VoA 1
_n"n-1 -
ap an
where
-1
(23) an =app —Vp An—lun .

From (22) and (23) it follows that if — A7l e R{=D*("=D
then — Ayl e RM" since a, <0.

If the eigenvalues of asymptotically stable Ae M, are
located outside the unit circle then by Corollary 1 the
eigenvalues of A" are located inside the unit circle and by
Corollary 2 the eigenvalues of — Ale EREXH are positive

and located inside the unit circle. o
Example 1. Consider the system (1) for u(t) =0 and

(24) a=| 3 L]
11 -3

EMz.

The characteristic polynomial of (24) has the form

s+3 -1

(25)  det[l,s—A]= =52 +65+8

-1 s+3

and the eigenvalues of the matrix (24) are s =-2,
Sy = —4 .
The inverse matrix of (24) has the form

26) Al=-

0| —o00|Ww
0 |Wwoo | —

. - 1 1
and its eigenvalues are: s, I= _E , 321 = _Z .

The eigenvalues of the matrix

-1 2x2
(27) -AT = e R

0| —o00|Ww
0 |Wwoo | —

are z ——s‘l—l z ——s‘l—l
1 1 5 2 2 =y
Theorem 7. If the eigenvalues of asymptotically stable

matrix AeR}" are positive and located inside the unit

circle then the eigenvalues of the matrix — Al e M, are
located in the left half plane outside the unit circle.

Proof. By Corollary 1 if the eigenvalues of Ae‘Rﬂxn are
positive and located inside the unit circle then the
eigenvalues of the matrix A~ are located outside the unit
circle and by Corollary 2 the eigenvalues of — Ale My

are located in the left half plane outside the unit circle. o
Example 2. Consider the discrete-time linear system

0.3 0.1

Xj,ieZ, ={01,..}.
02 0.4}' <24 =108}

(28) Xip1 = |:

The characteristic polynomial of the matrix

0.3 0.1} 202

29) Ad:[o.z 04 F

has the form

z-0.3
-0.2

-0.1

=22-0.7z+0.1
z-04

(30) det[lzz—ﬁﬁ]:{
and the eigenvalues of (29) are: z;=0.2,

Therefore, the system (28) is asymptotically stable.
The inverse matrix of (29) has the form

(31) Adlz{“ _1}
-2 3

22 :05 .

and its eigenvalues are 21_1 =35, 251 =2. Therefore, the

matrix (31) is unstable.
The matrix

(32) Ay Y
_ - c
2 -3 7
is the matrix of asymptotically stable continuous-time linear
system with its eigenvalues s; = zl_l =5, $ = 22_1 =-2

located in the left half plane outside the unit circle.

Discretization of positive continuous-time linear

systems, problem formulation and its solution
Consider the positive autonomous continuous-time
linear system

(83)  x(t)=Ax(),

where x(t)e R, t>0 and Ae M.

Applying the approximation

Xit1 = Xi
h

to (33) we obtain the discrete-time linear system

(34) X(t) = , Xigp =X(t+h), 5 =x(t),ieZ,

(35) Xi+1=AdXi,i€Z+,
where
(36) Ay =1,+hA.

The discrete-time system (35) is positive if and only if
Aq e R From (36) it follows that the system (35) is
positive for Ae M, if and only if the discretization step h
satisfies the condition
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37) h<———

fori=1...,n,
max|aii|

where g;; is the diagonal entry of Ae M.
Theorem 8. The eigenvalues sj, i=1,..,n of the matrix

Ae M, with the eigenvalues zj, i=1,..,n of the matrix

Ay e RT" are related by

(38) Zj = 1+ hSi .

Proof. The proof follows immediately from Theorem 5
applied to (36). o

Theorem 9. The discrete-time system (35) is asymptotically
stable for h >0 if and only if the continuous-time system
(33) is asymptotically stable and

2
(39) h<-—— I=1..n.
ai +fi
Proof. Let sy = + jf, | =1...,n, then the discrete-time

system (35) is asymptotically stable if and only if

‘zﬁ‘ =[l+hs[* = A+ hey)? + (hA)?

(40)

=1+2ha +(hey)? +(hB)* <1
or
@1)  2¢p +h(af + BE)<0.

Solving (41) with respect to h we obtain (4.7). o

From (39) it follows that h>0 if and only if ¢ <0,
I=1,..,n, ie. the continuous-time system (33) is
asymptotically stable. o

In section 3 it was shown that if the matrix Ae M, of the
system (33) is asymptotically stable then the matrix
—AT! eiﬁﬂxn is also asymptotically stable (Theorem 6)
and it can be considered as a matrix of positive discrete-
time linear system. It has been shown that by suitable
choice of the discretization step h it is possible to obtain
from positive continuous-time system (33) the positive
discrete-time system (35). The following problem arises:
under which conditions it is possible to find a suitable
discretization step h such that

42)  —Al=1,+hA

or equivalently

43)  1,+A+hA%=0.

Theorem 10. There exists a discretization step h such that
(43) holds if and only if

(44) 145, +hsf =0 for k=1,.,n,

where S, is the eigenvalue of the matrix A.

Proof. It is well-known [3, 18] that the equality (43) holds if
and only if the equation (44) is satisfied for all eigenvalues
Sk of the matrix A. o

If the matrix A has only one n-multiple real eigenvalue
S} =—a such that 1 —a <0 then from (44) we have

45  h=

In this case from Theorem 10 we have the following
corollary.

Corollary 3. There exists a discretization step given by (45)
if the matrix A has only one multiple real eigenvalue

S; =—a suchthat a—1>0.

Example 3. Consider the positive continuous-time system
(33) with

46 A-l72 T lem
(46) o _a|sM2

with double real eigenvalue S; =S, =—a=-2.
The inverse matrix of (46) has the form

] 0.5 0.25 -1 105 025
(47) A =- and —A " = .
0 0.5 0 0.5
From (45) we have
48) h= a_—zl _1
a 4

1
The matrix (46) satisfies the equality (43) for h = Z ,i.e.

{1 o} {—2 1} 1[4 —4} {0 0}
(49) + +— = .
0 1 0 -2| 4|0 4 0 0

Positive electrical circuits
Consider the electrical linear circuit shown in Figure 1

with given resistances R;, R,, Rz, inductances L;, L,

and source voltages €, €.

1,1 il i2 [42
R, R%
€1
&8

Fig. 1. Positive electrical circuit

Using the Kirchhoff’s laws we can write the equations
e =Ry + L1%Jr Rs(iy —ip),
(50) o
. i L
&, = Ryiy + Ly — 2+ Ry (i —y),
dt
which can be written in the form

SR
dt D) D) €

where
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_RitRs Ry LI

_ L L L
(51b) A= NS AL b
Ly L L

The electrical circuit is positive since AeM, and

Beﬂﬁxz for the positive resistances R;, R,, Ry and
inductances L, L, .

In particular case for Ry =R, =2, Ry=1and L =L, =1

we obtain
(52a) A -3
a = ,
1 -3
(52b) B—1 0
o 1|

The characteristic polynomial of the matrix (52a) has the
form
s-3 -1

(53) det[lzs—A]{ L eas

}=52+6s+8

and the eigenvalues of the matrix are: §; =-2, s, =—4.
The inverse matrix of (52a) has the form

(54) Al=-

0| —o00|w
0 |Wwoo | —

b - | S
and its eigenvalues are: S; = 3 szl = 1

By Corollary 2 the eigenvalues of the matrix

31
65) —A'=|8 Blewmi

8 8
are 7; :—sf1 :%, Z = —32_1 :% and the matrix as the
matrix of positive discrete-time linear system s

asymptotically stable.
Note that for Ry =1 the condition (45) is not satisfied since

for s, =—2 we have h:% and for s, =4, hz%.

For R3=0, Ri=Ry,=2 and L =L,=1 we obtain

1
51252:—2 and h:Z

Consider the electrical circuit shown in Figure 2 with
given resistances R;, R,, R3, capacitances C;, C, and
source voltage €.

Using the Kirchhoff's laws we can write the equations
du du
e= (Rl + R3)C1—1+ R3C2—2+U1,
dt dt
(56) q q
u u
e=R;C;—L+(R, + R3)CH —2 +U>,
3¢5 (Ry +R3)C, o

which can be written in the form

(57) i{ul} A{ul}r Be,
dt u, u,

where
(58)
_ R2+R3 R3
_| Gi[Ri(Ry +R3) +RoRs]  Cy[Ry(Ry +R3) +RyRs]
R3 _ R1+R3 ’
Co[Ri(Ry +R3) +RyR3]  Cy[Ry(Ry +R3) + RyRs]
Ry
Ci[Ri(Ry +R3) + RyRs ]
R, '
Co[Ri(Ry + R3) + RyRs]

B:

=
<

2

R,
R4 é

Fig. 2. Positive electrical circuit

The electrical circuit is positive since AeM, and

Be‘)ﬁXl for the positive resistances R;, R,, Ry and

capacitances C;, C,.

In particular case for R =R,=02, R;=0.1 and

C, =C, =1 we obtain

s s
_| 4 4
(59a) A= s _1_5
L 4 4
E
_12
(59b) B= 5|
L2

The characteristic polynomial of the matrix (59a) has the
form

s 13 .3
60)  det[l,5—A]= 4 4 |_g2,155,2
5 15 27 2

7 Sty

and the eigenvalues of the matrix (59a) are s; =—§,

Sy = -5.
The inverse matrix of (59a) has the form
| 0.3 0.1
(61) A =
0.1 0.3
and its eigenvalues are: sl_l = —% , 52‘1 = _%,

By Corollary 2 the eigenvalues of the matrix
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2x2
er

©2) _A_l{os 0.1}

0.1 03

9 2 _
are Zl =_Sl =§, 22 =—52
matrix of positive
asymptotically stable.

Note that for Ry =R, =0.2, R3 =0.1 and C; =C, =1 the

1:% and the matrix as the

discrete-time linear system s

condition (44) is not satisfied since for s; =—§ we have

4
h:i andfor S, =-5, h=—.
25 25
The considerations can be easily extended to positive
electrical circuits composed of resistances, inductances,

capacitances and source voltages (currents) [10, 20].

Concluding remarks
It has been shown that:

1) If the eigenvalues of asymptotically stable matrix
Ae M, are located outside the unit circle then the
eigenvalues of asymptotically stable  matrix
~Ale R are positive and located inside the unit
circle (Theorem 6).

2) If the eigenvalues of asymptotically stable matrix
AeRT" are positive and located inside the unit circle
then the eigenvalues of the matrix ~Ale M, are
located in the left half plane outside the unit circle
(Theorem 7).

3) The eigenvalues sj, i=1L,...,n of the matrix Ae M,
with the eigenvalues zj, i=1..,n of the matrix
I, +hAecRT" are related by (38) (Theorem 8).

4) The discrete-time system (35) is asymptotically stable
for h>0 if and only if the continuous-time system (33)
is asymptotically stable and satisfies (39) (Theorem 9).

The problem under which condition it is possible to find a

suitable discretization step h such that the equality (43)

holds has been formulated and solved (Theorem 10). The

problem has been applied to positive electrical circuits.

The considerations have been illustrated by numerical
examples. An open problem is an extension of these
considerations to fractional positive linear systems and
electrical circuits [17, 20].
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