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Abstract. The positive linear systems and electrical circuits with inverse state matrices are addressed. It is shown that: 1) If the eigenvalues of 
asymptotically stable matrix nMA  are located outside the unit circle then the eigenvalues of asymptotically stable matrix nnA 


  1  are 

positive and located inside the unit circle; 2) If the eigenvalues of asymptotically stable matrix nnA 
  are positive and located inside the unit 

circle then the eigenvalues of the matrix nMA  1  are located in the left half plane outside the unit circle. A new problem concerning the 
discretization of positive linear systems and electrical circuits is formulated and solved.  
 
Streszczenie. W pracy przedstawiono dodatnie układy liniowe i obwody elektryczne z odwrotnością macierzy stanu. Zostało pokazane że: 1) Jeżeli 
wartości własne asymptotycznie stabilnej macierzy nMA  są ulokowane poza obszarem koła jednostkowego wtedy wartości własne 
asymptotycznie stabilnej macierzy nnA 


  1  są dodatnie i leżą wewnątrz koła jednostkowego; 2) Jeżeli wartości własne asymptotycznie 

stabilnej macierzy nnA 
  są dodatnie i leżą wewnątrz koła jednostkowego wtedy wartości własne macierzy nMA  1  leżą w lewej 

półpłaszczyźnie poza obszarem koła jednostkowego. Sformułowany zostanie nowy problem dotyczący dyskretyzacji dodatnich układów liniowych 
oraz obwodów elektrycznych. (Dodatnie układy liniowe i obwody elektryczne z odwrotnością macierzy stanu). 
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Introduction 
A dynamical system is called positive if its trajectory 

starting from any nonnegative initial state remains forever in 
the positive orthant for all nonnegative inputs. An overview 
of state of the art in positive systems theory is given in 
monographs [2, 10]. Variety of models having positive 
behavior can be found in engineering, especially in 
electrical circuits [20], economics, social sciences, biology 
and medicine, etc. [2, 10]. 

The positive electrical circuits have been analyzed in [4-
9, 11, 13]. The constructability and observability of standard 
and positive electrical circuits has been addressed in [5], 
the decoupling zeros in [6] and minimal-phase positive 
electrical circuits in [8]. A new class of normal positive linear 
electrical circuits has been introduced in [9]. Positive 
fractional linear electrical circuits have been investigated in 
[11], positive linear systems with different fractional orders 
in [14, 15] and positive unstable electrical circuits in [16]. 
Zeroing of state variables in descriptor electrical circuits has 
been addressed in [19] and the realization problem of 
positive linear systems in [1]. Determinants of the matrices 
of solutions to the standard and positive linear electrical 
circuits have been addressed in [7] and positive electrical 
circuits with zero transfer matrices in [12]. 

In this paper the positive linear systems and electrical 
circuits with inverse state matrices will be addressed. 

The paper is organized as follows. In section 2 some 
definitions and theorems concerning linear positive systems 
and matrix functions are recalled. The relationship between 
stability of positive continuous-time and discrete-time linear 
systems is addressed in section 3. Discretization of 
continuous-time positive linear systems is analyzed and 
new problem and its solution are presented in section 4. 
The new problem is illustrated on positive electrical circuits 
in section 5. Concluding remarks are given in section 6.  

The following notation will be used:   - the set of real 
numbers, mn  - the set of mn  real matrices, mn

  - 
the set of mn  real matrices with nonnegative entries and 

1
  nn , nM  - the set of nn   Metzler matrices (real 

matrices with nonnegative off-diagonal entries), nI  - the 
nn   identity matrix, TA  denotes the transpose of the 

matrix A .  

Preliminaries 

Consider the continuous-time linear system 

(1)  BuAxx  ,                                                           

where ntxx  )( , mtuu  )(  are the state and 
input vectors and nnA  , mnB  . 
Definition 1. [2, 10] The continuous-time linear system (1) 
is called (internally) positive if ntx )( , 0t  for any 
initial conditions nx )0(  and all inputs mtu )( , 

0t . 
Theorem 1. [2, 10] The continuous-time linear system (1) is 
positive if and only if 

(2)  nMA , mnB 
 .                                                      

Definition 2. [2, 10] The positive continuous-time system 
(1) for 0)( tu  is called asymptotically stable if 

(3)  0)(lim 


tx
t

 for any nx )0( .                                            

Theorem 2. [2, 10] The positive continuous-time linear 
system (1) for 0)( tu  is asymptotically stable if and only if 
one of the following equivalent conditions is satisfied: 
1) All coefficient of the characteristic polynomial 

(4) 01
1

1 ...]det[)( asasasAsIsp n
n

n
nn  

   

are positive, i.e. 0ia  for 1,...,1,0  ni . 

2) There exists strictly positive vector 
T

n
T ][ 1   , 0k , nk ,...,1  such that 

(5)  0A .                                                               

If the matrix A  is nonsingular then we can choose 
cA 1 , where nc   is strictly positive. 

Consider the discrete-time linear system 

(6)  iii BuAxx 1 , ,...}1,0{ Zi ,                
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where n
ix  , m

iu   are the state and input vectors 
and nnA  , mnB  . 
Definition 3. [2, 10] The discrete-time linear system (6) is 
called (internally) positive if n

ix  , Zi  for any initial 
conditions nx 0  and all inputs m

iu  , Zi . 
Theorem 3. [2, 10] The discrete-time linear system (6) is 
positive if and only if 

(7)  nnA 
 , mnB 

 .                                   

Definition 4. [2, 10] The positive discrete-time system (6) 
for 0iu  is called asymptotically stable if 

(8)  0lim 


i
i

x  for any nx 0 .                           

Theorem 4. [2, 10] The positive discrete-time linear system 
(6) for 0iu  is asymptotically stable if and only if one of 
the following equivalent conditions is satisfied: 
1) All coefficient of the characteristic polynomial 

(9) 01
1

1 ...])1(det[)( azazazAzIzp n
n

n
nn  

                           

are positive, i.e. 0ia  for 1,...,1,0  ni . 

2) There exists strictly positive vector 
T

n
T ][ 1   , 0k , nk ,...,1  such that 

(10) 0)(  nIA .                                                 

If the matrix )( nIA   is nonsingular then we can 

choose cIA n
1)(  , where nc   is strictly 

positive. 

 Consider a matrix nnA   with the minimal 
characteristic polynomial 

(11) rm
r

mm )...()()()( 21
21   ,         

where 1 , 2 , … , r  are the eigenvalues of the matrix A 

and 



r

i
i nmm

1
. It is assumed that the function )(f  is 

well-defined on the spectrum },...,,{ 21 rA    of the 

matrix A, i.e. 

(12) 

rk
d

fd
f

d

df
ff

k

k

k
k

k

m

m

k
m

kk

,...,1,
)(

)( 

 ,...,
)(

)(  ),(

1

1
)1(

)1(























      

are finite [3, 18]. 
In this case the matrix )(Af  is well-defined and it is given 

by the Lagrange-Sylvester formula [3, 18] 

(13) 



r

i
i

m
imiiii

i

i
fZfZfZAf

1

)1()1(
21 )(...)()()(  ,                       

where 

(14)   


 

















1

1
1

1

)(

1

)!1()!1(

))((i

i

m

jk i
jk

jkk
nii

ij
d

d

jjk

IAA
Z




                           

and 

(15) 
im

i
i

)(

)(
)(







 , ri ,...,1 .                                         

In particular case where the eigenvalues 1 , 2 , … , n  of 

the matrix A are distinct ( ji   , ji  ) and 

(16) ))...()(()()( 21 n  ,            

then the formula (13) has the form 

(17) 



n

k
kk fZAf

1
)()(  ,                                                

where 

(18) 

 




n

ki
i ik

ni
k

IA
Z

1 


.                                                 

Theorem 5. Let )(f  be well-defined on the spectrum A  

of the matrix nnA  . If k , nk ,...,1  is the eigenvalue 

of the matrix A then )( kf  , nk ,...,1  are the eigenvalues 

of the matrix nnAf )( . 

Proof. The proof is given in [3, 18]. 
In particular cases from Theorem 5 we have the following 
corollaries. 
Corollary 1. If k , nk ,...,1  are the eigenvalues of the 

nonsingular matrix nnA   then 1
k , nk ,...,1  are the 

eigenvalues of the inverse matrix 1A . 
Corollary 2. If k , nk ,...,1  are the eigenvalues of the 

matrix nnA   then k , nk ,...,1  are the eigenvalues 

of the matrix A . 
 
Relationship between stability of continuous-time and 
discrete-time positive linear systems 

In this section the relationship between asymptotic 
stability of continuous-time and corresponding discrete-time 
positive linear systems will be investigated. 
Theorem 6. If the eigenvalues of asymptotically stable 
matrix nMA  are located outside the unit circle then the 
eigenvalues of asymptotically stable matrix nnA 


  1  

are positive and located inside the unit circle. 
Proof. First using the induction method we shall show that if  

nMA  is asymptotically stable then nnA 


  1 . 

The hypothesis is true for 1n  since 111][ MaA   and 

011 a . The hypothesis is also true for 2n  since for 

(19) 2
2221

1211
2 M

aa

aa
A 








                                          

asymptotically stable we have 

(20) nn

aa

aa

aaaa
A 


 














1121

1222

21122211

1
2

1
   

since 021122211  aaaa . 

Assuming that the hypothesis is true for 1n  we shall show 
that it is also valid for ,...3,2n . 
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It is easy to check that if the matrix nA  has the form 

(21) 







 

nnn

nn
n av

uA
A 1 ,    

  























 nn

n

n

n

a

a

a

u

,1

2

1


, ][ 1,21  nnnnn aaav      

then its inverse is given by 

(22) 
























 















nn

nn

n

nn

n

nnnn
n

n

aa

Av

a

uA

a

AvuA
A

A
11

1

1
1

1
1

1
11

1
1 ,       

where 

(23) nnnnnn uAvaa 1
1


 .                                     

From (22) and (23) it follows that if )1()1(1
1





  nn

nA  

then nn
nA 


  1  since 0na . 

If the eigenvalues of asymptotically stable nMA  are 
located outside the unit circle then by Corollary 1 the 
eigenvalues of 1A  are located inside the unit circle and by 
Corollary 2 the eigenvalues of nnA 


  1  are positive 

and located inside the unit circle. □ 
Example 1. Consider the system (1) for 0)( tu  and 

(24) 231

13
MA 











 .                                       

The characteristic polynomial of (24) has the form 

(25) 86
31

13
]det[ 2

2 



 ss
s

s
AsI             

and the eigenvalues of the matrix (24) are 21 s , 

42 s . 

The inverse matrix of (24) has the form 

(26) 


















8

3

8

1
8

1

8

3
1A                                             

and its eigenvalues are: 
2

11
1 s , 

4

11
2 s . 

The eigenvalues of the matrix 

(27) 221

8

3

8

1
8

1

8

3



 
















 A                                   

are 
2

11
11  sz , 

4

11
22  sz . 

Theorem 7. If the eigenvalues of asymptotically stable 
matrix nnA 

  are positive and located inside the unit 

circle then the eigenvalues of the matrix nMA  1  are 
located in the left half plane outside the unit circle. 
Proof. By Corollary 1 if the eigenvalues of nnA 

  are 
positive and located inside the unit circle then the 
eigenvalues of the matrix 1A  are located outside the unit 
circle and by Corollary 2 the eigenvalues of nMA  1  
are located in the left half plane outside the unit circle. □ 
Example 2. Consider the discrete-time linear system 

(28) ii xx 







 4.02.0

1.03.0
1 , ,...}1,0{ Zi .                   

The characteristic polynomial of the matrix 

(29) 22

4.02.0

1.03.0 









dA                                      

has the form 

(30)       1.07.0
4.02.0

1.03.0
]det[ 2

2 










 zz
z

z
AzI d  

and the eigenvalues of (29) are: 2.01 z , 5.02 z . 

Therefore, the system (28) is asymptotically stable. 
The inverse matrix of (29) has the form 

(31) 












32

141
dA                                                     

and its eigenvalues are 51
1 z , 21

2 z . Therefore, the 

matrix (31) is unstable. 
The matrix 

(32) 2
1

32

14
MAd 











                                         

is the matrix of asymptotically stable continuous-time linear 

system with its eigenvalues 51
11  zs , 21

22  zs  

located in the left half plane outside the unit circle. 
 
Discretization of positive continuous-time linear 
systems, problem formulation and its solution  

Consider the positive autonomous continuous-time 
linear system 

(33) )()( tAxtx  ,                                                         

where ntx )( , 0t  and nMA . 

Applying the approximation 

(34)       
h

xx
tx ii 
 1)( , )(1 htxxi  , )(txxi  , Zi    

to (33) we obtain the discrete-time linear system 

(35) idi xAx 1 , Zi ,                                              

where 

(36) hAIA nd  .                                                           

The discrete-time system (35) is positive if and only if 
nn

dA 
 . From (36) it follows that the system (35) is 

positive for nMA  if and only if the discretization step h 
satisfies the condition 
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(37) 
iia

h
max

1
  for ni ,...,1 ,                                

where iia  is the diagonal entry of nMA . 

Theorem 8. The eigenvalues is , ni ,...,1  of the matrix 

nMA  with the eigenvalues iz , ni ,...,1  of the matrix 

nn
dA 

  are related by 

(38) ii hsz 1 .                                                          

Proof. The proof follows immediately from Theorem 5 
applied to (36). □ 
Theorem 9. The discrete-time system (35) is asymptotically 
stable for 0h  if and only if the continuous-time system 
(33) is asymptotically stable and 

(39) 
22

2

ll

lh





 , nl ,...,1 .                                

Proof. Let lll js   , nl ,...,1 , then the discrete-time 

system (35) is asymptotically stable if and only if 

(40) 

1)()(21

)()1(1

22

2222





lll

llll

hhh

hhhsz




                

or 

(41) 0)(2 22  lll h  .                                       

Solving (41) with respect to h we obtain (4.7). □ 
From (39) it follows that 0h  if and only if 0l , 

nl ,...,1 , i.e. the continuous-time system (33) is 
asymptotically stable. □ 
In section 3 it was shown that if the matrix nMA  of the 
system (33) is asymptotically stable then the matrix 

nnA 


  1  is also asymptotically stable (Theorem 6) 
and it can be considered as a matrix of positive discrete-
time linear system. It has been shown that by suitable 
choice of the discretization step h it is possible to obtain 
from positive continuous-time system (33) the positive 
discrete-time system (35). The following problem arises: 
under which conditions it is possible to find a suitable 
discretization step h such that 

(42) hAIA n  1                                                   

or equivalently 

(43) 02  hAAIn .                                                     

Theorem 10. There exists a discretization step h such that 
(43) holds if and only if 

(44) 01 2  kk hss  for nk ,...,1 ,                                           

where ks  is the eigenvalue of the matrix A. 

Proof. It is well-known [3, 18] that the equality (43) holds if 
and only if the equation (44) is satisfied for all eigenvalues 

ks  of the matrix A. □ 

If the matrix A has only one n-multiple real eigenvalue 
1s  such that 01   then from (44) we have 

(45) 0
1

2








h .                                                       

In this case from Theorem 10 we have the following 
corollary. 
Corollary 3. There exists a discretization step given by (45) 
if the matrix A has only one multiple real eigenvalue 

1s  such that 01 . 

Example 3. Consider the positive continuous-time system 
(33) with 

(46) 220

12
MA 











                                                 

with double real eigenvalue 221  ss . 

The inverse matrix of (46) has the form 

(47) 









5.00

25.05.01A  and 







 

5.00

25.05.01A .          

From (45) we have 

(48) 
4

11
2








h .                                                      

The matrix (46) satisfies the equality (43) for 
4

1
h , i.e. 

(49) 















 





















00

00

40

44

4

1

20

12

10

01
.         

 
Positive electrical circuits 

Consider the electrical linear circuit shown in Figure 1 
with given resistances 1R , 2R , 3R , inductances 1L , 2L  

and source voltages 1e , 2e . 

 

 
Fig. 1. Positive electrical circuit 

 
Using the Kirchhoff’s laws we can write the equations 

(50) 

),(

),(

123
2

2222

213
1

1111

iiR
dt

di
LiRe

iiR
dt

di
LiRe




                                 

which can be written in the form 

(51a) 


























2

1

2

1

2

1

e

e
B

i

i
A

i

i

dt

d
,                                          

where 
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(51b) 



























2

32

2

3

1

3

1

31

L

RR

L

R
L

R

L

RR

A , 





















2

1
1

0

0
1

L

L
B .    

The electrical circuit is positive since 2MA  and 

22
B  for the positive resistances 1R , 2R , 3R  and 

inductances 1L , 2L . 

In particular case for 221  RR , 13 R  and 121  LL  

we obtain 

(52a) 












31

13
A ,                                                    

(52b) 









10

01
B .                                                            

The characteristic polynomial of the matrix (52a) has the 
form 

(53) 86
31

13
]det[ 2

2 










 ss
s

s
AsI            

and the eigenvalues of the matrix are: 21 s , 42 s . 

The inverse matrix of (52a) has the form 

(54) 


















8

3

8

1
8

1

8

3
1A                                                

and its eigenvalues are: 
2

11
1 s , 

4

11
2 s . 

By Corollary 2 the eigenvalues of the matrix 

(55) 221

8

3

8

1
8

1

8

3



 
















 A                              

are 
2

11
11  sz , 

4

11
22  sz  and the matrix as the 

matrix of positive discrete-time linear system is 
asymptotically stable. 
Note that for 13 R  the condition (45) is not satisfied since 

for 21 s  we have 
4

1
h  and for 42 s , 

16

3
h . 

For 03 R , 221  RR  and 121  LL  we obtain 

221  ss  and 
4

1
h . 

 Consider the electrical circuit shown in Figure 2 with 
given resistances 1R , 2R , 3R , capacitances 1C , 2C  and 

source voltage e . 
Using the Kirchhoff’s laws we can write the equations 

(56) 

,)(

,)(

2
2

232
1

13

1
2

23
1

131

u
dt

du
CRR

dt

du
CRe

u
dt

du
CR

dt

du
CRRe




                               

which can be written in the form 

(57) Be
u

u
A

u

u

dt

d



















2

1

2

1 ,                                            

where 
(58)

.

])([

])([

,

])([])([

])([])([

323212

1

323211

2

323212

31

323212

3

323211

3

323211

32





















































RRRRRC

R
RRRRRC

R

B

RRRRRC

RR

RRRRRC

R
RRRRRC

R

RRRRRC

RR

A

 

 
Fig. 2. Positive electrical circuit 
 

The electrical circuit is positive since 2MA  and 

12
B  for the positive resistances 1R , 2R , 3R  and 

capacitances 1C , 2C . 

In particular case for 2.021  RR , 1.03 R  and 

121  CC  we obtain 

(59a) 





















4

15

4

5
4

5

4

15

A ,                                         

(59b) 


















2

5
2

5

B .                                                          

The characteristic polynomial of the matrix (59a) has the 
form 

(60) 
2

25

2

15

4

15

4

5
4

5

4

15

]det[ 2
2 




















 ss

s

s
AsI       

and the eigenvalues of the matrix (59a) are 
2

5
1 s , 

52 s . 

The inverse matrix of (59a) has the form 

(61) 









3.01.0

1.03.01A                                                        

and its eigenvalues are: 
5

21
1 s , 

5

11
2 s . 

By Corollary 2 the eigenvalues of the matrix 
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(62) 221

3.01.0

1.03.0 


 







 A                                                 

are 
5

21
11  sz , 

5

11
22  sz  and the matrix as the 

matrix of positive discrete-time linear system is 
asymptotically stable. 
Note that for 2.021  RR , 1.03 R  and 121  CC  the 

condition (44) is not satisfied since for 
2

5
1 s  we have 

25

6
h  and for 52 s , 

25

4
h . 

The considerations can be easily extended to positive 
electrical circuits composed of resistances, inductances, 
capacitances and source voltages (currents) [10, 20]. 
 
Concluding remarks 

It has been shown that: 
1) If the eigenvalues of asymptotically stable matrix 

nMA  are located outside the unit circle then the 
eigenvalues of asymptotically stable matrix 

nnA 


  1  are positive and located inside the unit 
circle (Theorem 6). 

2) If the eigenvalues of asymptotically stable matrix 
nnA 

  are positive and located inside the unit circle 
then the eigenvalues of the matrix nMA  1  are 
located in the left half plane outside the unit circle 
(Theorem 7). 

3) The eigenvalues is , ni ,...,1  of the matrix nMA  
with the eigenvalues iz , ni ,...,1  of the matrix 

nn
n hAI 

  are related by (38) (Theorem 8). 
4) The discrete-time system (35) is asymptotically stable 

for 0h  if and only if the continuous-time system (33) 
is asymptotically stable and satisfies (39) (Theorem 9). 

The problem under which condition it is possible to find a 
suitable discretization step h such that the equality (43) 
holds has been formulated and solved (Theorem 10). The 
problem has been applied to positive electrical circuits. 

The considerations have been illustrated by numerical 
examples. An open problem is an extension of these 
considerations to fractional positive linear systems and 
electrical circuits [17, 20]. 
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