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Abstract. This paper presents the non-interior point method (NIP) based optimal power flow (OPF) algorithm parallelization and performance 
improvement experiments. The aim is to investigate the impact of parallelization techniques on overall OPF computations speedup. Presented 
approach takes advantage of the structure of algorithm and exploits it with the usage of multithreading to gain computation speedup. Obtained 
results give insight into the impact of multithreading techniques and algorithm initialization techniques. 
 
Streszczenie. W artykule zaprezentowano wyniki eksperymentów prowadzących do redukcji czasu realizacji obliczeń algorytmu metody non-interior 
point (NIP) w zastosowaniu do zadania optymalizacji rozpływu mocy (OPF). Celem pracy było zbadanie wpływu zastosowania technik 
zrównoleglenia obliczeń na czas realizacji zadania OPF. W zaprezentowanym podejściu brano pod uwagę strukturę algorytmu oraz wykorzystano 
implementację wielowątkową. Uzyskane wyniki pokazują wpływ wielowątkowej implementacji oraz zastosowanych technik inicjalizacji algorytmu na 
czas obliczeń. (Poprawa wydajności algorytmu metody non-interior point w zastosowaniu do zadania optymalizacji rozpływu mocy). 
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Introduction 

Optimal power flow (OPF), in general, is related to 
power system operational and planning optimization 
methods [1]. The main idea behind OPF is to determine the 
optimal values for control variables while respecting various 
constraints. Over the years, a number of methods have 
been applied to solve the OPF problem [2], using various 
optimization techniques, but their effectiveness and 
performance is highly dependent on the size of a power 
system being optimized [3]. The development of the OPF 
recently has tracked significant progress both in numerical 
optimization techniques and computer techniques 
application. In recent years, application of interior point (IP) 
and non-interior point (NIP) methods to solve OPF problem 
has been paid great attention [4], [5]. This is due to the fact 
that IP method based algorithms are among the fastest 
algorithms, well suited to solve large-scale nonlinear 
optimization problems [5]. 

And yet, it's still a great striving to improve those 
methods, especially in comparison with the current trends in 
the development of parallel programming techniques. The 
vast availability of multi-core CPUs, and multi-threaded 
programming libraries, inspires the search for solutions 
affecting not only the computational performance, but also 
application responsiveness. 

 
Optimal power flow formulation 

In general, the OPF problem may be defined 
mathematically as the nonlinear programming problem 
(NLP), with equality and inequality constraints, which is 
written as follows: 
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where: x – the decision variables, f(x) – objective function, 
h(x) – vector of equality constraints, g(x) – vector of 
inequality constraints. 
 In the OPF formulation, the decision variables are 
represented by voltage magnitudes and angles, active and 
reactive power generation values. The objective function 
f(x) may represent total cost losses, total MW generation, 
transmission losses, etc. The equality constraints h(x) 

represents the power flow equations and g(x) includes 
functions corresponding to the inequality constraints and 
variables limits, such as bus voltage limits, active and 
reactive power generation limits, lines power flow limits. 
 
Non-interior point method  
 One way to solve the problem (1), with respect to the 
interior-point method formulation [6], is to transform the 
inequality constraints into equality constraints by 
incorporating a barrier function and the non-negative slack 
variables vector z, 
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where: ng – number of inequality constraints, µk – barrier 
parameter, z – vector of slack variables. 
 According to logarithmic barrier function, as the 
parameter µk  approaches to zero (in k-th iteration), the 
solution of problem (2) approaches to the solution of 
problem (1). The Karush–Kuhn–Tucker (KKT) optimality 
conditions for the (2) can be written as: 
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where: x – partial derivative with respect to x, e = [1, 1, 
...1]T, Z = diag[zi; i = 1,..., ng], λ and π – the vectors of 
Lagrange multipliers, corresponding to equality and 
inequality constraints.  
 The system of nonlinear equations (3) forms the basis of 
the calculation process of the interior point method. The 
equations (3) are solved using a variant of Newton’s 
method. The proper way of determining the value of barrier 
parameter µk, and controlling the Newton’s method step 
size in subsequent iterations, are amongst the most 
important elements affecting convergence of IP method. 
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 The non-interior point method adopts the technique 
used in the class of complementarity problems [4]. 
It involves the introduction of so-called smoothing function 
(with additional parameter µ):  

(4) ( , ) 0 0, 0,z z z          for µ > 0, 

in the place of complementarity conditions, in the system of 
equations resulting from KKT conditions. It leads to the 
following system of nonlinear equations: 
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where: T],...,2,1);,([),( gii niz   πzΦ , μ = μe, 

y = [z, π, x, λ, μ]T, σ∈(0,1). 
Furthermore, the smoothing parameter μ (with scaling 
parameter σ) is treated as an additional variable, in the 
system of equations (5). In the experiments, the modified 
Fischer-Burmeister function of the following form has been 
used: 

(6)  2),( 22  zzz . 

 It is assumed that the system (5) is solved using 
damped Newton’s method, and in the subsequent iterations 
value of parameter μ is reduced to zero. At the k-th iteration, 
the update ∆y is determined by solving the following sparse 
system of linear equations: 
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 at point yk, ∆y = [∆z, ∆π, ∆x, ∆λ, ∆μ]T

. 

 The solution of system of equations (7) corresponds to 
the solution of a linear system of equations, which in matrix 
notation takes the following form: 
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 The new value of the vector of variables ∆y is 
determined according to the equation: 

(9) kkkk yyy  1 , 

where: k – number of iteration, αk – step length in the 
direction of vector ∆yk.  
 The choice of step length αk, is based on the 
backtracking Armijo line search rule, in which the distance 
from the solution point is determined by the equation: 

(10) 2/)),(),((),( T πzΦπzΦπz   . 

The choice of step length αk is performed according to the 
following rule: for given values of coefficients, σ∈(0,1], 
α1∈(0,1] find such: 

(11)  ,...2,1,0:max 1  ppk  , 

for which the following condition is fulfilled: 
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For step length αk determined in this manner, the new value 
of the variables vector y is determined, according to the 
equation (9).  
 
Analytical reduction of the system 
 One of the improvements that has great impact on the 
NIP algorithm computation time [4] is the analytical 
reduction of the system of equations (8), which leads to the 
formulation of a reduced system: 
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where: )()( 1T2 xgDDxgW xzπxx  L , 
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Then, variables update ∆z and ∆π values are computed 
using the following equations: 

(14) 
).(

,)(
1

DzDrDπ

xxgrz

zzπ

xπ






 

Parallelization and further algorithm improvements 
Presented non-interior point algorithm variant is not 

directly dedicated (by design) to efficient parallel 
implementation. However, by thoroughly studying the 
structure and performance of the sequential variant of NIP 
algorithm, some improvements have been proposed.  

The main idea behind the parallelization of the OPF 
computations using presented non-interior point algorithm 
implementation is to distribute the most time consuming, 
independent components computations across multiple 
computing units (processors).  

Each iteration of NIP method involves the computation 
of vector of equality constraints h(x), vector of inequality 
constraints g(x), vector  )(xx f  and matrices )(xhx  and  

)(xgx . These components are computed as independent 

tasks to form right-hand-side of (13). In order to obtain L2x  

matrix, and hence W matrix, Hessian matrices: ))(( T2 xhλx , 

))(( T2 xgπx  and )(2 xx f  are also computed as 

independent tasks. An important fact worth mentioning is, 
that in the implemented algorithm, individual components of 
the matrix (8) and hence (13) were determined analytically. 
In addition, each iteration also involves the variables 
update, which is also computed using multithreading. 

Moreover, it is possible to obtain some further 
improvements that lead to the shortening the time of 
calculations, by the proper selection of algorithm start point. 
Proposed, modified non-interior point based optimal power 
flow algorithm initialization technique is based on power 
flow solution—in contrast to the standard method used [4] 
(so called flat-start), in which initial values of angles were 
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set to zero, and the values of voltage, active and reactive 
power modules at production buses were set at the average 
calculated from the minimum and maximum permissible 
values. 

As observed, performing the power flow (PF) 
calculations before the actual OPF algorithm execution, and 
using the PF solution values as initial values to the OPF 
algorithm, reduces the number of iterations needed to 
obtain the final result. Therefore, reducing the number of 
iterations needed to obtain the solution, results in the 
shortening overall execution time. 

Both of the mentioned algorithm improvements have 
been implemented and tested computationally. 
 
Computational experiments 

The experiments have been performed using software 
created in C# language, with C/C++ wrapper library to the 
Intel® Math Kernel Library (MKL) routines.  

The developed software utilizes a custom object-
oriented C# implementation of sparse matrix representation 
for storing data used in the application. The algorithms, 
mentioned, have been implemented in the C# language 
also. MKL library [7] has been used to solve sparse linear 
systems via LU factorization with sparse matrix minimum 
degree ordering.  
 In multithreaded variant of algorithm implementation the 
Task Parallel Library (TPL) [8], [9] has been used. The main 
advantage of using TPL is the fact, that it scales the degree 
of concurrency dynamically to most efficiently use all the 
processors that are available in the system. In addition, it 
handles the partitioning of the work, the scheduling of 
threads on the ThreadPool, cancellation support and state 
management. 

Test systems data are derived from the MATPOWER 
package available for scientific and educational applications 
[10]. The 300, 2383 and 2746 bus test systems, were used 
in the simulations. Some statistics for the test power 
systems are presented in Table 1, where Nb denotes the 
number of buses, Ng denotes number of generator buses, 
No symbolizes the number of load buses and Nl  represents 
the number of branches. 

 
Table 1. Statistics for the test power systems 

Test system Nb Ng No Nl 

Case-300 300 69 231 411 

Case-2383 2383 327 2056 2896 

Case-2746 2746 363 2383 3279 

 
Some statistics for the non-interior-point based non-

linear programming problem (NLP) are displayed in Table 2, 
where, for each test system, is given: the number of 
decision variables nx, the number of equality constraints nh, 
the number of inequality constraints ng, square matrix (13) 
size of the analytically reduced system, denoted by M. 
 
Table 2. Sizes of the NLP model problem 

Test system nx nh ng M 

Case-300 738 600 1698 1338 

Case-2383 5420 4766 11866 10186 

Case-2746 6220 5492 13506 11712 

 
 To compare the performance of the implemented 
sequential NIP based OPF method algorithm, the multi-
threaded (MT) version of the algorithm has been 
implemented utilizing .NET 4 Task Parallel Library (TPL) [8], 

[9]. The results of experiments are shown in Table 3, where 
TSEQ denotes sequential algorithm execution time, TMT 
denotes multi-threaded algorithm execution time and finally 
TMTPF denotes multi-threaded algorithm execution time with 
power flow initialization technique applied. SM and SMPF 
denote speedup of algorithms, respectively multi-threaded 
version and multi-threaded version with power flow 
initialization technique. 

All of the experiments were performed utilizing 
implementation of non-interior point algorithm variant, with 
analytically reduced system of linear equations (13).  

Computations were performed using the Intel Core i7-
3770K @ 3.5 GHz machine with the 64-bit edition of the 
Microsoft Windows 10 operating system. 
 
Table 3. NIP method based optimal power flow results obtained for 
sequential and improved algorithm implementation 

Test 
system 

TSEQ TMT 

MT

SEQ
M T

TS   TMTPF 

MTPF

SEQ
MPF T

TS   

ms ms ms 
Case-300 409 377 1,09 351 1,17 

Case-2383 5191 4373 1,19 4098 1,27 

Case-2746 5877 4639 1,27 4382 1,34 

 
Figure 1 illustrates the overall optimal power flow 

computation time in milliseconds depending on the test 
system case. Growing value of speedup for larger system 
cases (figure 2) indicates future promise for using such 
algorithm improvements in order to obtain substantial 
performance benefits for large problems.  
 

Fig. 1. 
NIP based OPF computation time in ms depending on the test 

system case 

 Fig. 2. 
Multithreaded variant of NIP based OPF speedup 

Table 4 collects the results of experiments, that shows 
the influence of proposed initialization technique to the 
number of iterations of OPF algorithm and therefore to 
execution time. 
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Table 4. NIP method based optimal power flow results obtained for 
multithreaded variant of algorithm with PF initialization technique 

Test 
system 

MT with 
flat start 

MT with PF initialization technique 

No.of 
iter. 

TMT TPF No.of 
iter. 

 
TMT TPF+TMT 

ms ms ms ms 

Case-300 17 377 12 15 339 351 

Case-2383 25 4373 70 23 4028 4098 

Case-2746 24 4639 81 33 4300 4381 

 
In table 4, MT denotes multithreaded variant of 
implemented algorithm, TPF denotes power flow algorithm 
execution time. Additionally, for a specific test system, in a 
series of experiments, algorithm converged to the same 
solution point (with respect to the value of the objective 
function and variables vector values) meeting given 
calculation accuracy. 
 
Conclusion 

This paper discuses some issues that are directly 
related to an efficient implementation of the non-interior 
point algorithm for  nonlinear formulation of optimal power 
flow problem. 

Although, the nonlinear NIP algorithm is not well-suited 
to parallel implementations, it is worth to utilize the 
possibilities given by multithreaded architectures and 
compute independently some components during algorithm 
execution. Presented approach takes advantage of the 
problem structure in order to obtain increased efficiency for 
the overall method. The block structure of the linear system 
matrix solved in each iteration of the NIP method has been 
exploited in the parallel computation.  

Task Parallel Library significantly simplifies parallel 
development by providing routines that can automatically 
distribute tasks across the computer's available CPUs and 
allows to create parallel code in a natural way without 
having to work directly with threads or the thread pool. 

Accordingly to further improvements. The sparsity 
pattern of individual components of the matrix (13) as well 
as reordering to minimize fill-in remain the same. Since, the 
computation of linear system of equations within an iteration 

of NIP algorithm, demands great computational effort, it 
may be advantageous to use the same, given matrix 
sparsity pattern in subsequent iterations.  
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