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Abstract. In this communication we present a hardware-oriented algorithm for constant matrix-vector product calculating, when the all elements of 
vector and matrix are complex numbers. The main idea behind our algorithm is to combine the advantages of Winograd’s inner product formula with 
Gauss's trick for complex number multiplication. The proposed algorithm versus the naïve method of analogous calculations drastically reduces the 
number of multipliers required for FPGA implementation of complex-valued constant matrix-vector multiplication. If the fully parallel hardware 
implementation of naïve (schoolbook) method for complex-valued matrix-vector multiplication requires 4MN multipliers, 2M N-inputs adders and 2MN 
two-input adders, the proposed algorithm requires only 3N(M+1)/2 multipliers and [3M(N+2)+1,5N+2] two-input adders and 3(M+1) N/2-input adders.  
 
Streszczenie. W komunikacie został zaprezentowany sprzętowo-zorientowany algorytm mnożenia macierzy stałych przez wektor zmiennych w 
założeniu, gdy zarówno elementy macierzy jak i elementy wektora są liczbami zespolonymi. Główna idea proponowanego algorytmu polega na 
łącznym zastosowaniu wzoru Winograda do wyznaczania iloczynu skalarnego oraz formuły Gaussa mnożenia liczb zespolonych. W porównaniu z 
tradycyjnym sposobem realizacji obliczeń proponowany algorytm pozwala zredukować liczbę układów mnożących niezbędnych do całkowicie 
równoległej realizacji na platformie FPGA układu wyznaczania iloczynu wektorowo-macierzowego. Jeśli całkowicie równoległa implementacja 
tradycyjnej metody wyznaczania omawianych iloczynów wymaga 4MN bloków mnożących, 2M N-wejściowych sumatorów oraz 2MN sumatorów 
dwuwejściowych, to proponowany algorytm wymaga tylko 3N(M+1)/2 błoków mnożenia, [3M(N+2)+1,5N+2] sumatorów dwuwejściowych i 3(M+1) 
sumatorów N/2-wejściowych. (Sprzętowo-zorientowany algorytm wyznaczania iloczynu macierzy stałych przez wektor zmiennych dla 
danych zespolonych).  
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Introduction 
 Most of the computation algorithms which are used in 
digital signal, image and video processing, computer 
graphics and vision and high performance supercomputing 
applications have matrix-vector multiplication as the kernel 
operation [1, 2]. For this reason, the rationalization of these 
operations is devoted to numerous publications [3-18]. In 
some cases, elements of the multiplied matrices and 
vectors are complex numbers [5-9]. In the general case a 
fully parallel hardware implementation of a rectangular 
complex-valued matrix-vector multiplication requires MN  
multipliers of complex numbers. In the case where the 
matrix elements are constants, we can use encoders 
instead of multipliers. This solution greatly simplifies 
implementation, reduces the power dissipation and lowers 
the price of the device. On the other hand, when we are 
dealing with FPGA chips that contain several tens or even 
hundreds of embedded multipliers, the building and using of 
additional encoders instead of multipliers is irrational. 
Examples could be that of the Xilinx Spartan-3 family of 
FPGA’s which includes between 4 and 104 18x18 on-chip 
multipliers and the Altera Cyclone-III family of FPGA’s 
which include between 23 and 396 18×8 on-chip multipliers. 
Another Altera's Stratix-V GS family of FPGA’s has between 
600 and 1963 variable precision on-chip blocks optimized 
for 27×27 bit multiplication. In this case, it would be 
unreasonable to refuse the possibility of using embedded 
multipliers. Nevertheless, the number of on-chip multipliers 
is always limited, and this number may sometimes not be 
enough to implement a high-speed fully parallel matrix-
vector multiplier. Therefore, finding ways to reduce the 
number of multipliers in the implementation of matrix-vector 
multiplier is an extremely urgent task. Some interesting 
solutions related to the rationalization of the complex-valued 
matrix-matrix and matrix-vector multiplications have already 
been obtained [10-13]. There are also original and effective 
algorithms for constant matrix-vector multiplication. 
However, the rationalized algorithm for complex-valued 
constant matrix-vector multiplications has not yet been 
published. For this reason, in this paper, we propose such 
algorithm. 

Preliminary remarks 
The complex-valued vector-matrix product may be defined 
as:   
(1)   11   NNMM XAY  

where 
  ],...,,[ 1101 NN xxxX  - is N -dimensional 

complex-valued input vector, 
  ],...,,[ 1101 MM yyyY  - is 

M -dimensional complex-valued output vector, and 
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In this expression )(r
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nma  are real constants, and j  is the imaginary unit, 

satisfying 12 j . Superscript r  means the real part of 

complex number, and the superscript i  means the 
imaginary part of complex number. The task is to calculate 
the product defined by the expression (1) with the minimal 
multiplicative complexity. 
 
Brief background 
It is well known, that complex multiplication requires four 
real multiplications and two real additions, because: 
 
(2)  )())(( bcadjbdacjdcjba  . 

 
So, we can observe that the direct computation of (1) 
requires NM  complex multiplications ( NM4 real 
multiplications) and )12(2 NM  real additions. 

According to Winograd’s formula for inner product 
calculation each element of vector 1MY  can be calculated 

as follows [15]: 



88                                                                              PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 1/2017 

(3) 



 

1
2

0
212,122, )])([(

N

k
Nmkkmkkmm cxaxay  ,

  

where 







1
2

0
12,2,

N

k
kmkmm aac  and 






1
2

0
122

N

k
kkN xx  

if N  is even. (The case of odd N , will not be considered 
here, as it can easily be reduced to the even length N ). It 
is clear that if we are dealing with complex-valued data, 

then )()( i
m

r
mm jccc   and )()( i

N
r

NN j  , where )(r
N  

and )(i
N  are real and imaginary parts of calculated real 

variable N  respectively, )(r
mc  and )(i

mc  are real and 

imaginary parts of calculated in advance constants mc . 

Here it should be emphasized that because nma ,  are 

constants, the mc  can be precomputed and stored in a 

lookup table in advance. Thus, the calculation of mc  does 

not require the execution of arithmetic operations during 
realization of the algorithm. The calculation of N  requires 

the implementation of the 2N  complex multiplications. 

Therefore, we can observe that the computation of (3) for all 
m  requires only 2/)1( MN  complex multiplications 

( )1(2 MN real multiplications). However, the number of 

real additions in this case is significantly increased. 
It is well known too, that the complex multiplication can be 
carried out using only three real multiplications and five real 
additions, because [13]: 
 

(4) ]))([())(( bdacdcbajbdacjdcjba  . 
 

Expression (4) is well known as Gauss’s trick for 
multiplication of complex numbers [16]. Taking into account 
this trick the expression (3) can be calculated using the only 

2)1(3 MN  multiplications of real numbers at the 

expense of further increase in the number of real additions. 
 
The algorithm 

First, we present the vector 
  ],...,,[ 1101 NN xxxX  in the 

following form: 
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and vector ],...,,[ 1101   MM yyyY  - in the following form:  


  ],,...,,,,[ )(
1

)(
1

)(
1

)(
1

)(
0

)(
012

i
M

r
M

irir
M yyyyyyY . 

Next, we split vector 12 NX  into two separate vectors )1(
1NX  

and )2(
1NX  containing only even-numbered and only odd-

numbered elements respectively: 
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Then from the elements of the matrix NM A  we form two 

super-vectors of data: 
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And now we introduce the vectors 
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Next, we introduce some auxiliary matrices: 
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where NM 1  - is an NM   matrix of ones (a matrix where 

every element is equal to one), NI  - is an identity NN   

matrix and sign „ ” denotes tensor product of two matrices 
[17]. 
Using the above matrices the rationalized computational 
procedure for calculating the constant matrix-vector product 
can be written as follows:  
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where sign „ ” denotes direct sum of the matrices which 
are numbered in accordance with the increase of the 
superscript value [17]. 
If the elements of 

MN
2

3D  placed vertically without disturbing 

the order and written in the form of the vector 
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the following vector-matrix procedure: 
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As already noted, the elements of the vector 12 MC can be 

calculated in advance. However, the elements of vector 

12 MΞ must be calculated during the realization of the 

algorithm. The procedure describes the implementation of 
computing elements of this vector can be represented in the 
following form: 
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Consider, for example, the case of 4N  and 3M . 
Then the procedure (5) takes the following form: 
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The data flow diagram for realization of proposed 
algorithm is illustrated in Figure 1. In turn, Figure 2 shows a 
data flow diagram for computing elements of the matrix 

23MND  in accordance with the procedure (6). In this paper, 

the data flow diagrams are oriented from left to right. Note 
[13-14] that the circles in these figures show the operation 
of multiplication by a real number (variable) inscribed inside 
a circle. Rectangles denote the real additions with values 
inscribed inside a rectangle. Straight lines in the figures 
denote the operation of data transfer. At points where lines 
converge, the data are summarized. (The dashed lines 
indicate the subtraction operation). We use the usual lines 
without arrows specifically so as not to clutter the picture. 
Figure 3a shows a data flow diagram for computing 
elements of the vector 12 MΞ  in accordance with the 

procedure (7). In turn, Figure 3b shows a data flow diagram 
for computing elements of the diagonal matrix 2/3NΨ . 

 
Discussion of hardware complexity 
We calculate how many multipliers and adders are required, 
and compare this with the number required for a fully 
parallel naïve implementation of complex-valued matrix–
vector product in Eq. (1). The number of conventional two-

input multipliers required using the proposed algorithm is 
2)1(3 MN . Thus using the proposed algorithm the 

number of multipliers to implement the complex-valued 
constant matrix-vector product is drastically reduced. 
Additionally our algorithm requires )1(2 NM  one-input 

adders with constant numbers (ordinary encoders), 
25,1)4(  NNM  conventional two-input adders, and 

)1(3 M  )2/(N -input adders. Instead of encoders we can 

apply the ordinary two-input adders. Then the 
implementation of the algorithm will require 2)1(3 MN  

multipliers 25,1)2(3  NNM  two-input signed adders 

and )1(3 M  )2/(N -input adders. 

 

 
 
Fig.1. Data flow diagram for rationalized complex-valued constant 
matrix-vector multiplication algorithm for N=4, M=3. 
 
In turn, the number of conventional two-input multipliers 
required using fully parallel implementation of “schoolbook” 
method for complex-valued matrix-vector multiplication is 

MN4 . This implementation also requires M2  N -inputs 
adders and MN2  two-input adders. Thus, our proposed 
algorithm saves 50 and even more percent of two-input 
embedded multipliers but it significantly increases number 
of adders compared with direct method of fully-parallel 
implementation. For applications where the "cost" of a 
multiplication is greater than that of an addition, the new 
algorithm is always more computationally efficient than 
direct evaluation of the matrix-vector product. This allows 
concluding that the suggested solution may be useful in a 
number of cases and have practical application allowing to 
minimize complex-valued constant matrix-vector multiplier’s 
hardware implementation costs. 
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Fig.2. The data flow diagram for calculating elements of diagonal 
matrix D3MN/2 for N=4, M=3. 
 
 

 
 
Fig.3. The data flow diagrams for calculating elements of vector 
Ξ6×1 (a), and for calculating elements of diagonal matrix Ψ6 (b). 
 
Concluding remarks 

The article presents a new hardware-oriented algorithm 
for computing the complex-valued constant matrix-vector 
multiplication. To reduce the hardware complexity (number 
of two-operand multipliers), we exploit the Winograd’s inner 
product formula and Gauss trick for complex number 
multiplication. This allows the effective use of parallelization 
of computations on the one hand and results in a reduction 
in hardware implementation cost of complex-valued 
constant matrix-vector multiplier on the other hand. 

If the FPGA-chip already contains embedded multipliers, 
their number is always limited. This means that if the 
implemented algorithm contains a large number of 
multiplications, the developed processor may not always fit 
into the chip. So, the implementation of proposed in this 
paper algorithm on the base of FPGA chips, that have built-

fin binary multipliers, also allows saving the number of 
these blocks or realizing the whole complex-valued 
constant matrix-vector multiplying unit with the use of a 
smaller number of simpler and cheaper FGPA chips. It will 
enable to design of data processing units using a chips 
which contain a minimum required number of embedded 
multipliers and thereby consume and dissipate least power. 
How to implement a fully parallel complex-valued constant 
matrix-vector multiplier on the base of concrete FPGA 
platform is beyond the scope of this article, but it's a subject 
for follow-up articles. 
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