
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 1/2017 87

Aleksandr CARIOW, Galina CARIOWA

West Pomeranian University of Technology, Szczecin

doi:10.15199/48.2017.01.21

A Hardware-oriented Algorithm for Complex-valued Constant
Matrix-vector Multiplication

Abstract. In this communication we present a hardware-oriented algorithm for constant matrix-vector product calculating, when the all elements of
vector and matrix are complex numbers. The main idea behind our algorithm is to combine the advantages of Winograd’s inner product formula with
Gauss's trick for complex number multiplication. The proposed algorithm versus the naïve method of analogous calculations drastically reduces the
number of multipliers required for FPGA implementation of complex-valued constant matrix-vector multiplication. If the fully parallel hardware
implementation of naïve (schoolbook) method for complex-valued matrix-vector multiplication requires 4MN multipliers, 2M N-inputs adders and 2MN
two-input adders, the proposed algorithm requires only 3N(M+1)/2 multipliers and [3M(N+2)+1,5N+2] two-input adders and 3(M+1) N/2-input adders.

Streszczenie. W komunikacie został zaprezentowany sprzętowo-zorientowany algorytm mnożenia macierzy stałych przez wektor zmiennych w
założeniu, gdy zarówno elementy macierzy jak i elementy wektora są liczbami zespolonymi. Główna idea proponowanego algorytmu polega na
łącznym zastosowaniu wzoru Winograda do wyznaczania iloczynu skalarnego oraz formuły Gaussa mnożenia liczb zespolonych. W porównaniu z
tradycyjnym sposobem realizacji obliczeń proponowany algorytm pozwala zredukować liczbę układów mnożących niezbędnych do całkowicie
równoległej realizacji na platformie FPGA układu wyznaczania iloczynu wektorowo-macierzowego. Jeśli całkowicie równoległa implementacja
tradycyjnej metody wyznaczania omawianych iloczynów wymaga 4MN bloków mnożących, 2M N-wejściowych sumatorów oraz 2MN sumatorów
dwuwejściowych, to proponowany algorytm wymaga tylko 3N(M+1)/2 błoków mnożenia, [3M(N+2)+1,5N+2] sumatorów dwuwejściowych i 3(M+1)
sumatorów N/2-wejściowych. (Sprzętowo-zorientowany algorytm wyznaczania iloczynu macierzy stałych przez wektor zmiennych dla
danych zespolonych).

Keywords: algorithm design and analysis, FPGA, VLSI, high performance computing
Słowa kluczowe: konstruowanie i analiza algorytmów, FPGA, VLSI, wysokowydajne obliczenia

Introduction
 Most of the computation algorithms which are used in
digital signal, image and video processing, computer
graphics and vision and high performance supercomputing
applications have matrix-vector multiplication as the kernel
operation [1, 2]. For this reason, the rationalization of these
operations is devoted to numerous publications [3-18]. In
some cases, elements of the multiplied matrices and
vectors are complex numbers [5-9]. In the general case a
fully parallel hardware implementation of a rectangular
complex-valued matrix-vector multiplication requires MN
multipliers of complex numbers. In the case where the
matrix elements are constants, we can use encoders
instead of multipliers. This solution greatly simplifies
implementation, reduces the power dissipation and lowers
the price of the device. On the other hand, when we are
dealing with FPGA chips that contain several tens or even
hundreds of embedded multipliers, the building and using of
additional encoders instead of multipliers is irrational.
Examples could be that of the Xilinx Spartan-3 family of
FPGA’s which includes between 4 and 104 18x18 on-chip
multipliers and the Altera Cyclone-III family of FPGA’s
which include between 23 and 396 18×8 on-chip multipliers.
Another Altera's Stratix-V GS family of FPGA’s has between
600 and 1963 variable precision on-chip blocks optimized
for 27×27 bit multiplication. In this case, it would be
unreasonable to refuse the possibility of using embedded
multipliers. Nevertheless, the number of on-chip multipliers
is always limited, and this number may sometimes not be
enough to implement a high-speed fully parallel matrix-
vector multiplier. Therefore, finding ways to reduce the
number of multipliers in the implementation of matrix-vector
multiplier is an extremely urgent task. Some interesting
solutions related to the rationalization of the complex-valued
matrix-matrix and matrix-vector multiplications have already
been obtained [10-13]. There are also original and effective
algorithms for constant matrix-vector multiplication.
However, the rationalized algorithm for complex-valued
constant matrix-vector multiplications has not yet been
published. For this reason, in this paper, we propose such
algorithm.

Preliminary remarks
The complex-valued vector-matrix product may be defined
as:
(1) 11 NNMM XAY

where
],...,,[1101 NN xxxX - is N -dimensional

complex-valued input vector,
],...,,[1101 MM yyyY - is

M -dimensional complex-valued output vector, and

1,11,10,1

1,11,10,1

1,01,00,0

NMMM

N

N

NM

aaa

aaa
aaa

A ,

where 1,...,1,0 Nn , 1,...,1,0 Mm , and
)()(i

n
r

nn jxxx ,)(
,

)(
,,

i
nm

r
nmnm jaaa ,)()(i

m
r

mm jyyy .

In this expression)(r
nx ,)(i

nx ,)(r
my ,)(i

my are real variables,
)(
,

r
nma ,)(

,
i

nma are real constants, and j is the imaginary unit,

satisfying 12 j . Superscript r means the real part of

complex number, and the superscript i means the
imaginary part of complex number. The task is to calculate
the product defined by the expression (1) with the minimal
multiplicative complexity.

Brief background
It is well known, that complex multiplication requires four
real multiplications and two real additions, because:

(2))())((bcadjbdacjdcjba .

So, we can observe that the direct computation of (1)
requires NM complex multiplications (NM4 real
multiplications) and)12(2 NM real additions.

According to Winograd’s formula for inner product
calculation each element of vector 1MY can be calculated

as follows [15]:

88 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 1/2017

(3)

1
2

0
212,122,)])([(

N

k
Nmkkmkkmm cxaxay ,

where

1
2

0
12,2,

N

k
kmkmm aac and

1
2

0
122

N

k
kkN xx

if N is even. (The case of odd N , will not be considered
here, as it can easily be reduced to the even length N). It
is clear that if we are dealing with complex-valued data,

then)()(i
m

r
mm jccc and)()(i

N
r

NN j , where)(r
N

and)(i
N are real and imaginary parts of calculated real

variable N respectively,)(r
mc and)(i

mc are real and

imaginary parts of calculated in advance constants mc .

Here it should be emphasized that because nma , are

constants, the mc can be precomputed and stored in a

lookup table in advance. Thus, the calculation of mc does

not require the execution of arithmetic operations during
realization of the algorithm. The calculation of N requires

the implementation of the 2N complex multiplications.

Therefore, we can observe that the computation of (3) for all
m requires only 2/)1(MN complex multiplications

()1(2 MN real multiplications). However, the number of

real additions in this case is significantly increased.
It is well known too, that the complex multiplication can be
carried out using only three real multiplications and five real
additions, because [13]:

(4)]))([())((bdacdcbajbdacjdcjba .

Expression (4) is well known as Gauss’s trick for
multiplication of complex numbers [16]. Taking into account
this trick the expression (3) can be calculated using the only

2)1(3 MN multiplications of real numbers at the

expense of further increase in the number of real additions.

The algorithm

First, we present the vector
],...,,[1101 NN xxxX in the

following form:
],,...,,,,[)(
1

)(
1

)(
1

)(
1

)(
0

)(
012

i
N

r
N

irir
N xxxxxxX ,

and vector],...,,[1101 MM yyyY - in the following form:

],,...,,,,[)(
1

)(
1

)(
1

)(
1

)(
0

)(
012

i
M

r
M

irir
M yyyyyyY .

Next, we split vector 12 NX into two separate vectors)1(
1NX

and)2(
1NX containing only even-numbered and only odd-

numbered elements respectively:

],,...,,,,[)(
2

)(
2

)(
2

)(
2

)(
0

)(
0

)1(
1

i
N

r
N

irir
N xxxxxxX ,

],,...,,,,[)(
1

)(
1

)(
3

)(
3

)(
1

)(
1

)2(
1

i
N

r
N

irir
N xxxxxxX .

Then from the elements of the matrix NM A we form two

super-vectors of data:

],...,,[
)1

2
(

12
)1(

12
)0(

12
)1(

1

N

MMMMN AAAA

,

],...,,[
)1

2
(

12
)1(

12
)0(

12
)2(

1

N

MMMMN AAAA

,

where

],,...,,,,[)(
12,1

)(
12,1

)(
12,1

)(
12,1

)(
12,0

)(
12,0

)(
12

i
kM

r
kM

i
k

r
k

i
k

r
k

k
M aaaaaaA

,

],,...,,,,[)(

2,1
)(

2,1
)(
2,1

)(
2,1

)(
2,0

)(
2,0

)(
12

i
kM

r
kM

i
k

r
k

i
k

r
k

k
M aaaaaaA

,

And now we introduce the vectors

],,...,,,,[)(
1

)(
1

)(
1

)(
1

)(
0

)(
012

i
M

r
M

irir
M ccccccC ,

],,...,,,,[)()()()()()(
12

i
N

r
N

i
N

r
N

i
N

r
NM Ξ .

Next, we introduce some auxiliary matrices:

)(21

2

I1IP MNNMN , 23

22

3

 TIT MN
MNMN

,

)(3

2
1

2

3
3

II1Σ

MNMN
M

, 3232 TIT MMM

,

11

10

01

23T ,

 110

101
32T .

where NM 1 - is an NM matrix of ones (a matrix where

every element is equal to one), NI - is an identity NN

matrix and sign „ ” denotes tensor product of two matrices
[17].
Using the above matrices the rationalized computational
procedure for calculating the constant matrix-vector product
can be written as follows:

(5)
)]},(

[ˆ{

)1(
1

)1(
1

2

3

2

3

2

3
3

32121212

NNMNMN
MNMNMN

MNM
MMMMM

XPATD

ΣTCΞY

)(
3

1
2

0
2

3
l

MN

lMN
DD

 ,),,()(

2
)(

1
)(

0
)(

3
llll sssdiagD ,

where sign „ ” denotes direct sum of the matrices which
are numbered in accordance with the increase of the
superscript value [17].
If the elements of

MN
2

3D placed vertically without disturbing

the order and written in the form of the vector

1
2

3

2

3
1

2

3

MNMNMN

1DS , then they can be calculated using

the following vector-matrix procedure:

(6))(
~)2(

1
)2(

1
2

3
1

2

3
 NNMNMN

MNMNMN
XPATS ,

23

22

3
~~

 TIT MN
MNMN

,

10

11

11
~

23T .

As already noted, the elements of the vector 12 MC can be

calculated in advance. However, the elements of vector

12 MΞ must be calculated during the realization of the

algorithm. The procedure describes the implementation of
computing elements of this vector can be represented in the
following form:

(7))1(
1

2

3

2

3

2

3
3

322212
 N

N
NNNMM XTΨΣTPΞ

,

where

23

22

3

 TIT N
N

N

, 2122 I1P MM , 3

2
1

2

3
3

I1Σ

NN

and

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 1/2017 89

)(
3

1
2

0
2

3
k

N

kN
ΨΨ

 ,),,()12(

2
)12(

1
)12(

0
)(

3
 kkkk diag Ψ .

If the elements of
N

2

3Ψ placed vertically without disturbing

the order and written in the form of the vector

1
2

3

2

3
1

2

3

NNN

1ΨΨ , then they can be calculated using the

following vector-matrix procedure:
)2(
1

2

3
1

2

3
~

 N

NNN
XTΨ , 23

22

3
~~

 TIT N
NN

.

Consider, for example, the case of 4N and 3M .
Then the procedure (5) takes the following form:

)]}([ˆ{)1(
14412

)1(
11212181818996161616 XPATDΣTCΞY

,

where

],,,,,[)(
3

)(
3

)(
1

)(
1

)(
0

)(
016

iririr yyyyyyY ,

],,,[)(
2

)(
2

)(
0

)(
0

)1(
14

irir xxxxX ,
],,,[)(

1
)(

3
)(

1
)(

1
)2(
14

irir xxxxX ,

)(
3

5

0
18

l

l
DD

 ,),,()(

2
)(

1
)(

0
)(

3
llll sssdiagD ,

)(
~)2(

14412
)2(
112121811818118 XPAT1DS ,

],[)1(
16

)0(
16

)1(
112 AAA

,

],[)1(
16

)0(
16

)2(
112 AAA

,

],,,,,[)(
4

)(
4

)(
4

)(
4

)(
4

)(
416

iririr Ξ ,

],,,,,[)(
2

)(
2

)(
1

)(
1

)(
0

)(
016

iririr ccccccC ,

],,,,,[)(
1,2

)(
1,2

)(
1,1

)(
1,1

)(
1,0

)(
1,0

)0(
16

iririr aaaaaaA

, 2361218
~~

 TIT

],,,,,[)(

3,2
)(
3,2

)(
3,1

)(
3,1

)(
3,0

)(
3,0

)1(
16

iririr aaaaaaA

, 2361218 TIT

,

],,,,,[)(

0,2
)(
0,2

)(
0,1

)(
0,1

)(
0,0

)(
0,0

)0(
16

iririr aaaaaaA

, 32396 TIT

,

],,,,,[)(

2,2
)(
2,2

)(
2,1

)(
2,1

)(
2,0

)(
2,0

)1(
16

iririr aaaaaaA

, 23246
~~

 TIT ,

)(2132412 I1IP , 921189 I1Σ ,

)1(
1446663322616)(XTΨΣTPIΞ

N , 23246 TIT

,

)2(
144616616

~
 XT1ΨΨ , 21326 I1P , 32163 I1Σ ,

and)(
3

1

0
6

k

k
ΨΨ

 ,),,()12(

2
)12(

1
)12(

0
)(

3
 kkkk diag Ψ ,

The data flow diagram for realization of proposed
algorithm is illustrated in Figure 1. In turn, Figure 2 shows a
data flow diagram for computing elements of the matrix

23MND in accordance with the procedure (6). In this paper,

the data flow diagrams are oriented from left to right. Note
[13-14] that the circles in these figures show the operation
of multiplication by a real number (variable) inscribed inside
a circle. Rectangles denote the real additions with values
inscribed inside a rectangle. Straight lines in the figures
denote the operation of data transfer. At points where lines
converge, the data are summarized. (The dashed lines
indicate the subtraction operation). We use the usual lines
without arrows specifically so as not to clutter the picture.
Figure 3a shows a data flow diagram for computing
elements of the vector 12 MΞ in accordance with the

procedure (7). In turn, Figure 3b shows a data flow diagram
for computing elements of the diagonal matrix 2/3NΨ .

Discussion of hardware complexity
We calculate how many multipliers and adders are required,
and compare this with the number required for a fully
parallel naïve implementation of complex-valued matrix–
vector product in Eq. (1). The number of conventional two-

input multipliers required using the proposed algorithm is
2)1(3 MN . Thus using the proposed algorithm the

number of multipliers to implement the complex-valued
constant matrix-vector product is drastically reduced.
Additionally our algorithm requires)1(2 NM one-input

adders with constant numbers (ordinary encoders),
25,1)4(NNM conventional two-input adders, and

)1(3 M)2/(N -input adders. Instead of encoders we can

apply the ordinary two-input adders. Then the
implementation of the algorithm will require 2)1(3 MN

multipliers 25,1)2(3 NNM two-input signed adders

and)1(3 M)2/(N -input adders.

Fig.1. Data flow diagram for rationalized complex-valued constant
matrix-vector multiplication algorithm for N=4, M=3.

In turn, the number of conventional two-input multipliers
required using fully parallel implementation of “schoolbook”
method for complex-valued matrix-vector multiplication is

MN4 . This implementation also requires M2 N -inputs
adders and MN2 two-input adders. Thus, our proposed
algorithm saves 50 and even more percent of two-input
embedded multipliers but it significantly increases number
of adders compared with direct method of fully-parallel
implementation. For applications where the "cost" of a
multiplication is greater than that of an addition, the new
algorithm is always more computationally efficient than
direct evaluation of the matrix-vector product. This allows
concluding that the suggested solution may be useful in a
number of cases and have practical application allowing to
minimize complex-valued constant matrix-vector multiplier’s
hardware implementation costs.

)(
1,0
ra

)(
1,0
ia

)(
0
rx

)(
0
ix

)(
2
ix

)(
2
rx

)(
1,1
ra

)(
1,1
ia

)(
1,2
ra

)(
1,2

ia

)(
3,0

ra

)(
3,0

ia
)(

3,1
ra

)(
3,1
ia

)(
3,2

ra

)(
3,2

ia

)(
0
ry

)(
0
iy

)(
1

ry

)(
1
iy

)(
2
ry

)(
2
iy

)0(
0s

)0(
1s

)0(
2s

)1(
0s

)1(
1s

)1(
2s

)2(
0s

)2(
1s

)2(
2s

)3(
0s

)3(
1s

)3(
2s

)4(
0s

)4(
1s

)4(
2s

)5(
0s

)5(
1s

)5(
2s

)(
0
rc)(

4
r
)(

4
i

)(
4
r
)(

4
i

)(
4
r
)(

4
i

)(
1

rc
)(

1
ic

)(
2
rc

)(
2
ic

)(
0
ic

90 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 93 NR 1/2017

Fig.2. The data flow diagram for calculating elements of diagonal
matrix D3MN/2 for N=4, M=3.

Fig.3. The data flow diagrams for calculating elements of vector
Ξ6×1 (a), and for calculating elements of diagonal matrix Ψ6 (b).

Concluding remarks

The article presents a new hardware-oriented algorithm
for computing the complex-valued constant matrix-vector
multiplication. To reduce the hardware complexity (number
of two-operand multipliers), we exploit the Winograd’s inner
product formula and Gauss trick for complex number
multiplication. This allows the effective use of parallelization
of computations on the one hand and results in a reduction
in hardware implementation cost of complex-valued
constant matrix-vector multiplier on the other hand.

If the FPGA-chip already contains embedded multipliers,
their number is always limited. This means that if the
implemented algorithm contains a large number of
multiplications, the developed processor may not always fit
into the chip. So, the implementation of proposed in this
paper algorithm on the base of FPGA chips, that have built-

fin binary multipliers, also allows saving the number of
these blocks or realizing the whole complex-valued
constant matrix-vector multiplying unit with the use of a
smaller number of simpler and cheaper FGPA chips. It will
enable to design of data processing units using a chips
which contain a minimum required number of embedded
multipliers and thereby consume and dissipate least power.
How to implement a fully parallel complex-valued constant
matrix-vector multiplier on the base of concrete FPGA
platform is beyond the scope of this article, but it's a subject
for follow-up articles.

Authors: prof. PhD, D.Sc. Aleksandr Cariow, PhD Galina Cariowa,
Department of Computer Architectures and Telecommunications,
Faculty of Computer Sciences, West Pomeranian University of
Technology, Szczecin, ul. Żołnierska 51, 71-210 Szczecin, E-mail:
atariov@wi.zut.edu.pl, gtariova@wi.zut.edu.pl

REFERENCES
[1] B lahu t , R . E . Fast algorithms for digital signal processing,

Addison-Wesley Publishing company, Inc. 1985
[2] P ra t t , W. K . Digital Image Processing (Second Edition), John

Wiley & Sons, New York, 1991.
[3] Fu j imo to , N. Dense matrix-vector multiplication on the CUDA

architecture, Parallel Processing Letters, vol. 18, no. 4, 511-
530, 2008.

[4] Qasim, S. M., Telba, A. A. and Al Mazroo, A. Y. FPGA Design
and Implementation of Matrix Multiplier Architectures for Image
and Signal Processing, IJCSNS International Journal of
Computer Science and Network Security, vol.10, no.2, 168-176,
2010.

[5] Fam, A. T. Efficient complex matrix multiplication, IEEE
Transactions on Computers, vol. 37, no. 7, 877-879, 1988.

[6] Conno l l y , F. T. Yag le , A. E. Fast algorithms for complex
matrix multiplication using surrogates, IEEE Transactions on
Acoustics, Speech and Signal Processing, vol. 37, no. 6, 938 –
939, 1989.

[7] O l l i l a , E. Ko ivunen , V. Poor , H. V. Complex-valued signal
processing — essential models, tools and statistics, Information
Theory and Applications Workshop, 6-11 Feb. 2011, 1 – 10.

[8] Guoq iang Li, L i ren Liu Complex-valued matrix-vector
multiplication using twos complement representation”. Optics
Communications, vol. 105, no. 3-4, 161-166.

[9] Barazesh B., M icha l ina J. and P icco A. A VLSI signal
processor with complex arithmetic capability. IEEE Transactions
on Circuits and Systems, 35(5), 495–505, 1988.

[10] Gus ta fsson O., Oh lsson H. and Wanhammar L., Low-
complexity constant coefficient matrix multiplication using a
minimum spanning tree approach, Proceedings of the 6th
Nordic Signal Processing Symposium (NORSIG 2004), June 9 -
11, Espoo, Finland, 141-144, 2004.

[11] Bou l l i s N. T i sserand A. Some optimizations of hardware
multiplication by constant matrices, IEEE Transactions on
Computers, 2005, vol. 54, no 10, 1271 – 1282.

[12] K inane A. Muresan V. Towards an optimized VLSI design
algorithm for the constant matrix multiplication problem. In:
Proc. IEEE International Symposium on Circuits and Systems
(ISCAS-2006), 5111 – 5114, 2006.

[13] Car iow A., Car iowa G., An algorithm for complex-valued
vector-matrix multiplication. Electrical Review, R 88, no 10b,
213-216, 2012.

[14] Car iow A., Car iowa G., A rationalized algorithm for
complex-valued inner product calculation, Measurement
Automation and Monitoring, no 7, pp. 674-676, 2012.

[15] W inograd S. A new algorithm for inner Product, IEEE
Transactions on Computers, vol. C-17, no 7, 693 – 694, 1968.

[16] Knu th D. E., The Art Of Computing Programming, vol. 2,
Semi-numerical Algorithms, Addison-Wesley, Reading, MA,
USA, Second Ed., 1981.

[17] Rega l ia P. A. and M i t ra K. S., Kronecker Products, Unitary
Matrices and Signal Processing Applications, SIAM Review.,
vol. 31, no. 4, pp. 586-613, 1989

)1(
0

)1(
1

)1(
2

)3(
0

)3(
1

)3(
2

)(
1

rx

)(
1

ix

)(
3
ix

)(
3
rx

)(
0
rx

)(
0
ix

)(
2
ix

)(
2
rx

)(
4

r
)(

4
i
)(

4
r
)(

4
i

)(
4

r
)(

4
i

)1(
0

)1(
1

)1(
2

)3(
0

)3(
1

)3(
2

a) b)

)0(
0s

)0(
1s

)0(
2s

)1(
0s

)1(
1s

)1(
2s

)2(
0s

)2(
1s

)2(
2s

)3(
0s

)3(
1s

)3(
2s

)4(
0s

)4(
1s

)4(
2s

)5(
0s

)5(
1s

)5(
2s

)(
1

rx

)(
1

ix

)(
3
ix

)(
3
rx

)(
0,0

ra

)(
0,0

ia

)(
0,1
ra

)(
0,1
ia

)(
0,2

ra

)(
0,2

ia

)(
2,0

ra

)(
2,0

ia

)(
2,1
ra

)(
2,1
ia

)(
2,2

ra

)(
2,2

ia

