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Time delay measurement method using conditional averaging 
of the delayed signal module 

 
 

Abstract. The paper presents a method of determining time delays of random signals using conditional averaging of the delayed signal module. An 
evaluation of selected metrological properties was prepared for the proposed statistical models of extreme characteristics. The theoretical relations 
were compared with the results of modelling and measurements. 
 
Streszczenie. W pracy przedstawiono metodę wyznaczania opóźnień czasowych sygnałów losowych wykorzystującą warunkowe uśrednianie 
modułu sygnału opóźnionego. Dla zaproponowanych modeli statystycznych charakterystyk ekstremalnych dokonano oceny wybranych właściwości 
metrologicznych. Zależności teoretyczne porównano z wynikami modelowania i pomiarów. (Metoda pomiaru opóźnienia wykorzystująca 
warunkowe uśrednianie modułu sygnału opóźnionego). 
 
Keywords: random signals, conditional averaging, transportation time delay estimation. 
Słowa kluczowe: sygnały losowe, warunkowe uśrednianie, estymacja czasu opóźnienia transportowego. 
 
 

Introduction 
In the measurement of delay time of random signals one 

employs statistical methods for the analysis of signals, most 
often the cross-correlation function [1]. Other less common 
methods used in the field of time include difference 
functions [4, 5], the cross-correlation method with the use of 
the Hilbert transform [2], and methods based on conditional 
averaging of signals [6–9]. This paper presents the results 
of selected research into the metrological properties of the 
method using the function of the conditional expected value 
of the delayed signal module (CAEV). The principle of 
generating random signals with transport delay is shown in 
Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. The principle of the generation of signals in the measurement 
of transport delay: l – the distance between the sensors; 
v – velocity of the object [8] 

 
In matters concerning time delay estimation in 

measurement technique (such as detection of interference 
sources, measurements of transport parameters) the 
relation between signals x(t) and z(t) is often expressed by 
the following formula: 

(1)          ,0 tntxctntytz    

where: x(t) – stationary low-pass random signal with the 
normal probability distribution  xN ,0  and autocorrelation 

function  xR ; y(t) – stationary low-pass random signal 

with distribution  yN ,0 ; c – damping factor; 0 = l/v – 

transportation time delay, n(t) – stationary white noise with 
distribution  nN ,0  not correlated with signal x(t); z(t) – 

delayed and disturbed signal. The cross-correlation 
functions (CCF) describing the investigated model of signal 
processing are as follows: 
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The conditional expected value of the delayed signal 
module |z(t)| for the condition x(t) = 0 is defined by the 
relation [6]: 
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where:  
0x

zp  denotes conditional probability density for 

signal |z| for the condition x = 0. In order to simplify the 
visual presentation in relation (4) and following: A|z||x=0(τ) = 
A|z|, |z(t)| = |z|, x(t) = x, c = 1 were assumed. 
 
Time delay measurement principle  

For normal probability distributions, the conditional 
density p(y|x) is expressed with the formula:  
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The conditional probability density p(z|x) can be obtained by 
assigning a convolution of density p(y|x) and p(n): 
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Solving the integral and assuming the condition x=0 gives 
the result: 
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For a normal function of probability density  
0x

zp  based 

on (4) one obtains 0xzA in the form of [6]:  
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and Arel with   0n  
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A good estimator of the conditional expected value (4) is 
the arithmetic conditional average value of the delayed 
signal module (CAAV) [3, 6, 7]. Appointing a CAAV estimator 
consists in determining mutually uncorrelated at the time of 
passing through zero: signal x, registering fragments of the 
behaviour of signal |z| of appropriate length and their 
averaging in a set of implementations.  

The variance of the CAAV estimator for M  averages is 
determined by the relation: 
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Due to the fact that for n(t) = 0 the value of the function 
A|z|(τ0) = 0, the relative variance (11) can be represented 
with a formula using square normalisation of the maximum 
value of characteristic (A2|z|)max : 
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An example of the behaviour of function Arel(τ) for 
mutually delayed stochastic signals x(t) and z(t) with n(t) = 0 
was presented in Figure 2. Transport delay 0   

determines the argument of the main minimum of the CAAV 
function and the main maximum of the correlation function 

 xzR . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. Examples of behaviours of:  
a) stochastic signals x(t) and z(t); b) function Arel(τ) for n(t) = 0; 

c) cross-correlation function  xzR  

Simplified theoretic and experimental models of a CAAV 
characteristic 
 By modelling the input signal x(t) with low-pass white 
noise in band B with a normalised autocorrelation function: 
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and by expressing the cross-correlation function with the 
relation: 

(13)     0   xxy  

followed by expanding it by means of Taylor’s series 
approximation: 
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one obtains a simplified model of the CAAV relation (6): 
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With 0n  and for 0   A|z||x=0=0, and the characteristic 

in neighbourhood 0  changes in a linear way. By applying 

similar simplifications for expression (10) one can represent 
the variance of the CAAV estimator with the following 
relation: 
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With 0n  and for 0  the variance equals zero. 

During the CCF estimation with pairs of non-correlated 
samples divided into N cycles, a relation for relative 
deviation [3] was obtained for the model of signals (1): 
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 signal-to-noise relation. 

The relative standard deviation of the CAAV estimator for 
τ = τ0  and M averages can be represented with the formula: 
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The increase of the disturbance value causes the main 

maximum of CCF to decrease and the main minimum of 

CAAV to increase respectively. 

By comparing the relations (17) and (18), one obtains:  
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The diagram of relation (19) for c = 1 and several values of 

quotient N/M is represented in Figure 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3. Diagrams of relation (19) for given values of N/M 

 
As can be noticed, in the considered scope of S/N the 

relative standard deviation of CAAV is always smaller than 
the respective deviation of CCF for the value of N/M smaller 
or equal to 10. In practice, the value of the quotient N/M 
depends on the measurement signals correlation interval, 
which is determined by the selection of non correlated 
samples.   
 
Simulation research 

Simulation research was conducted with the use of an 
application developed in the LabVIEW environment. 
Mutually delayed stochastic signals reflecting model (1) 
were generated. Next, using non correlated pairs of 
samples, discreet CCF and CAAV estimators were 
determined for given values of S/N. The number of samples 
was assumed as 200 000, standard deviation of the signal 

1x and discrete transportation time delay l0 equal to 100 

samples. 
Figure 4 represents the diagram of the following relation:  
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in comparison to the theoretical behaviour of (19) for  
N/M = 1 and N/M = 2. The results of simulations in the 
whole investigated scope of S/N deviate to a small degree 
from the calculations (in favour of the CAAV characteristic), 
which becomes evident in particular in the scope of S/N 
values close to one. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. Diagrams of relations (19) and (20) for N /M = 1 and N /M =2 

Experimental research 
The variance of extreme characteristics was studied 

practically. The measurement was carried out at an 
experimental site with random voltage signal generators, 
signal delay systems, data acquisition system, function 
generator and a digital oscilloscope. Signals were sampled 
with a fixed interval ms2,0pT . 

In experiments carried out for the parameters: 30M ; 

V3,0 nixi
 ; ms15102,075 3

0    ten estimates of 

CCF and CAAV characteristics were determined along with 
average behaviours of estimates  (lines marked in bold in 
Fig. 5). The variance of the CAAV characteristic is visible as 
clearly smaller than the correlative one at the point and in 
the neighbourhood of the transport delay [6]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5. Experimental characteristics of: a) CAAV; b) CCF [8] 
 

Figure 6 presents the random signals x(t) and n(t) used 
in the experiments. The random signal x(t) is a low-pass 
white noise in band B=500Hz, signal n(t) is a white noise in 
band B=20kHz. Figure 7 shows the CAAV characteristic in 
the absence of the disturbing signal n(t). Figure 8 illustrates 
the CAAV characteristic at given levels of disturbing signal 
n(t): a) Vn 7,0 ; b) Vn 22,0 ; c) Vn 07,0 . 

Experiments were carried out with the number of averages 
M=256. 

For the experiments, processing systems and signals 
were used which were not completely deprived of constant 
components, and the digital oscilloscope with a real  
quantisation error, which is visible in the autocorrelation and 
CAAV characteristics. The vertical displacement of the 
CAAV characteristic caused by the constant component in 
the input and output signals and disturbances acting at the 
output do not change the position of the main minimum of 
the CAAV function in time. 

 

a) 

 
 

b) 
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Fig.6. Random signals: signal x(t)-1; disturbing signal n(t)-2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7. CAAV characteristic: Vx 7,0 ; Vn 0 ; ms10  ; 

M = 256 
 
Summary 

The CAEV method is characterised by a relatively simple 
probabilistic model and a simple practical implementation. 
The advantages of the characteristic A|z|(τ) include a large 
steepness and small variance in the neighbourhood of the 
minimum in situations in which the distortion level of the 
delayed signal is not high. 

Simulation tests and measurements confirm the results 
of the theoretical calculations and the beneficial properties 
of the CAAV characteristic compared to the correlation 
characteristic in situations in which the correlation level of 
the input signal and the delayed signal is large. 

Distortions of the delayed signal, both natural and those 
introduced by processing systems, cause an elevation of 
the main minimum of the CAAV characteristic, a reduction in 
steepness of the characteristic in the neighbourhood of the 
minimum and a deterioration of accuracy in determining the 
value of the transport delay. 
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