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Abstract. The authors proposed a solution to the over-segmentation of color images processed by watershed segmentation algorithm. The solution 
utilizes hierarchical cluster analysis and treats watersheds as objects characterized by a number of attributes. This paper briefly discusses the 
solution (clustering methods, their parameters, selected watershed attributes) and presents an algorithm used for selecting optimal parameters for 
cluster analysis. Detailed results obtained for a set of test images are presented and discussed. 
 
Streszczenie. Autorzy zaproponowali rozwiązanie problem nadsegmentacji obrazów barwnych. Zjawisko to występuje w wyniku zastosowania 
transformacji wododziałowej. Rozwiązanie wykorzystuje hierarchiczną analizę skupień i traktuje zlewiska jako obiekty opisane zestawami atrybutów. 
Artykuł, krótko omawia zaproponowaną metodę (metody analizy skupień, jej parametry, wybrane atrybuty zlewisk) a także przedstawia algorytm 
zastosowany do doboru optymalnych parametrów analizy skupień. Artykuł przedstawia i omawia również wyniki otrzymane dla obrazów testowych. 
(Algorytm doboru optymalnych parametrów analizy skupień zastosowanej do redukcji nadsegmentacji). 
 
Keywords: over-segmentation reduction, watershed transformation, cluster analysis. 
Słowa kluczowe: redukcja nadsegmentacji, transformacja wododziałowa, analiza skupień. 
 
Introduction 

Watershed transformation is an interesting 
segmentation method introduced by Beucher and 
Lantuejoul [1]. The algorithm simulates pouring water onto a 
landscape created on the basis of a digital image. Water 
flows with gravity and collects in catchment basins 
(watersheds) [2]. As input, the algorithm requires an image 
where higher pixel values indicate the presence of 
boundaries. Most images do not satisfy this requirement. A 
gradient filter is frequently used for converting the original 
image to an appropriate height function. The watershed 
transformation produces a region for each of the image’s 
local minima and, since the gradient operator is very 
sensitive to noise [3], the resulting number of regions 
(watersheds) is significantly larger than the number of 
objects in the image. Consequently the image is usually 
strongly over-segmented. In spite of this problem, results 
obtained using watershed transformation are useful 
because all region boundaries are continuous (which is not 
the case for many segmentation algorithms) and over-
segmentation can be removed by appropriate watershed 
merging.  
 
Review of over-segmentation methods 

 
Fig. 1. Categories of over-segmentation reduction methods. 

Arrows connect methods that are frequently combined.  
 
There are many over-segmentation reduction methods. 

The main categories are shown in figure 1. Preprocessing is 
the method  most widely used. It aims at reducing the 
number of local minima in the gradient image. 
Preprocessing can be performed on the original image, on 
the gradient image or both. Solutions proposed in the 
literature for use with an original image consist of using 
morphological filters [4] or selective smoothing filters [5, 6]. 
These filters reduce noise and remove spurious details. 
Preprocessing the gradient image consists of thresholding it 
[5, 7] or of imposing markers on it [8]. The goal of 

thresholding is to remove small gradient values whereas the 
goal of imposing markers is to eliminate local minima that 
are not selected by the markers. Frequently the local 
minima are filled up using morphological reconstruction. 
The main difficulty with this approach is marker selection. 

Another very popular group of methods used in 
computer vision are graph algorithms [9]. Solutions using 
region adjacency graphs were developed for over-
segmentation reduction. These methods usually consists in 
merging adjacent regions based on: (1) an arbitrarily 
selected similarity measure built upon the average value of 
watershed pixels and the watershed size [5], (2) dynamics 
of watershed contours [10], (3) a similarity measure 
determined using neural networks [11]. Additionally, region 
growing algorithms can be extended for use with region 
adjacency graphs and hence used for over-segmentation 
reduction [12, 13]. Unfortunately the last two approaches 
require initialization: neural networks require training while 
region growing algorithms require seeds for the region 
growing process. Another proposed solution is performing 
watershed transformation on graphs [14]. This allows for 
creating a hierarchy of segmentations with different degrees 
of detail: watershed transformation executed on a graph 
merges watersheds into larger regions, which in turn results 
in a new graph on which the watershed transformation can 
again be executed. It is an interesting approach. However, it 
does not allow one to select the number of classes in the 
final segmentation.  

A more recent advance in over-segmentation reduction 
is resolution pyramids (multiscale segmentation). Solutions 
proposed in the literature take advantage of the fact that the 
gradient of a scaled down image contains a lower number 
of local minima. They use one of the following approaches: 
(1) project those minima onto the full resolution image [8, 
15], (2) perform the watershed transformation on the 
smallest image and project the results onto the full 
resolution image [16, 17], (3) apply the watershed 
transformation to all levels of the image pyramid and then 
determine relations between watersheds on this and 
consecutive levels [18].  

Finally other segmentation methods (apart from region 
growing) may be adapted for watershed merging. An 
example of such a method is optimal thresholding [19] and 
active contours (snakes) [20, 21]. In the latter approach 
selected watershed lines merely serve as contours that 
initialize a snake’s evolution. 
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 The methods briefly discussed above are often 
designed with a particular segmentation task in mind (e. g. 
road lane segmentation in [4]) or are designed to be 
universal [5, 8]. Specific methods cannot be easily adapted 
for other uses while universal methods may not deliver the 
best possible segmentation results.  

 
Over-segmentation reduction using hierarchical cluster 
analysis 

Because of the reasoning outlined in the previous 
section, the authors proposed a method for merging 
watersheds in over-segmented images [22]. It was tested 
on gray-scale CT and MRI scans. In [23] its use was 
extended to color images. Clustering methods are popular 
in image processing [24,25] however they had rarely been 
used for over-segmentation reduction. Our method uses 
hierarchical cluster analysis, which was chosen for its 
versatility. The hierarchical clustering methods can be 
considered modular. It is possible to change clustering 
strategy, similarity measure or watershed properties used 
for merging without modifying any other component. If the 
method is properly implemented, such changes can be 
made quickly and easily. If needed, new clustering 
methods, similarity/dissimilarity measures and watershed 
attributes can be introduced. Any quantitative measure of 
watershed properties can be used as the watershed’s 
attribute. This means that the proposed approach can be 
easily extended or adapted to a particular task. For 
example, attributes from [26] may be used. New similarity 
measures and attributes, similar to those in [27], would be 
needed for clustering watersheds in HSV color space 
because of the hue component which is expressed as an 
angular value. However, as long as angular values are not 
used (RGB, Lab or S and V components from the HSV 
space), the presented approach can be used without 
change. 

Our approach consists in treating watersheds as objects 
which are characterized by a set of attributes. Attribute 
values may be standardized in order to equalize their 
contribution to similarity values. Watersheds’ resemblances 
are measured with a similarity or dissimilarity coefficient. 
There are a number of coefficients that can be used. Once 
all possible similarities are obtained, the watersheds are 
grouped using one of the clustering methods. The result is a 
similarity hierarchy which can be represented as a tree. 
Each tree node represents the merging of two clusters and 
has a similarity measure associated with it. With the 
similarity tree available, obtaining the required number of 
clusters is straightforward. It can be thought of as cutting 
the tree at a given level (of similarity). The tree is divided 
into two parts: top and bottom. The top part, which contains 
the final clustering steps, is left out while the bottom part 
determines how the watersheds are merged. 

The remainder of this paper focuses on an algorithm 
that was used for finding clustering parameters that produce 
good segmentations. By good segmentation we mean one 
that receives high grades from an assessment function. It is 
important to note that while assessment functions are 
frequently designed to give values that correspond to an 
assessment of a human observer [28, 29], the 
segmentation goal may not always be to produce a visually 
pleasing segmentation. Using the results shown below, a 
simplified version of the presented algorithm may be used 
for automatic, semi-optimal, over-segmentation reduction. 

 
Hierarchical clustering parameters 

This section contains only basic information about 
cluster analysis methods used in the presented algorithm’s 

test. More detailed information may be found, for example, 
in [30,31] 

Four clustering methods are used in the test (because of 
modular implementation the list can easily be extended). 
The methods are: single linkage (SLINK), complete linkage 
(CLINK), unweighted pair-group method using arithmetic 
averages (UPGMA) and Ward’s minimum variance method. 
The SLINK, CLINK and UPGMA methods differ in the way 
they update the similarity (or dissimilarity) matrix after the 
clusters are merged [30]. With the SLINK method, two 
clusters are considered as similar as their two most similar 
components The CLINK method considers two clusters as 
similar as their two most dissimilar components. UPGMA 
averages the similarity/dissimilarity measures of all possible 
pairs of components in the two clusters. Ward’s minimum 
variance method differs significantly from the previous three 
methods. It does not use similarity/dissimilarity coefficients. 
Ward’s method looks for a merger that will cause a minimal 
increase in the total within-cluster error sum of squares [31]. 

As stated before our approach consists in treating 
watersheds as objects described by attributes. The 
following attributes are used in this paper: (1) watershed 
size (number of pixels), (2) watershed mean value (listed as 
avg. in table 1), (3) variance (listed as var.), (4) standard 
deviation (denoted s.d.), (5) value spread (denoted spr.), (6) 
minimal value (denoted min.), (7) maximal value (denoted 
max.). These attributes reflect (to some extent) values, 
texture and degree of over-segmentation. 

In the case of color images each attribute produces as 
many values as there are color components. For example, 
three averages are computed for each watershed in a RGB 
image. 

Different attributes have values from different ranges. 
Standardization may be used to prevent one attribute from 
having too much weight in watershed similarity. It is an 
optional step. The following methods are used in this paper 
[30]: (1) a method that causes the standardized attribute to 
have a mean value of 0 and a standard deviation of 1 
(denoted sigma in table 1), (2) a method that linearly scales 
the data and guarantees the highest value to be 1 (listed as 
L1), (3) a method that linearly scales the data, and 
guarantees the minimum to be 0 and the maximum to be 1 
(listed as L01), (4) a method that causes the normalized 
data to sum up to 1 (denoted LS1). Additionally, attributes 
of a particular type (such as averages in an RGB image) 
are standardized together in order to prevent color 
information from being distorted.  

CLINK, SLINK and UPGMA clustering methods require 
a similarity/dissimilarity coefficient for generating a 
similarity/dissimilarity matrix. Coefficients may be easily  
exchanged in order to take advantage of their properties. 
Seven coefficients are used in this paper [30]: (1) Euclidean 
distance (in n-dimensional space), (2) average Euclidean 
distance coefficient (it is able to compensate for missing 
values), (3) Canberra metric coefficient (equalizes the 
contribution of each attribute), (4) Bray-Curtis coefficient 
(similar to the Canberra metric, however, it allows one 
attribute to be dominant), (5) coefficient of shape difference 
(ignores additive translation), (6) cosine coefficient (ignores 
scaling), (7) correlation coefficient (insensitive to attribute 
additive translation) 

 
Segmentation quality assessment 

The algorithm presented in this paper relies on 
segmentation assessment functions. The following 
functions are used: (1) mean value of the difference image 
that is the difference of the original image and its 
segmentation (segmentation in which each class is 
represented by its average), it is similar to average absolute 
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deviation, (2) mean square error (MSE) [32,33] 
(segmentations in which classes contain many outliers will 
have larger MSE), (3) standard deviation of the difference 

image (measures segmentation uniformity), (4) mutual 
information (measures how much information about 

 

 
 
Fig. 2. Algorithm for selecting optimal clustering parameters. 

 
the original image is contained in the segmentation) 

[34], (5) redundancy (a normalized variant of mutual 
information), (6) function F introduced by Liu and Yang [28], 
(7) function F’(I) alternative of F proposed by M. Borsotti, P. 
Campadelli and R. Schettini [29], (8) function Q also 
proposed by Borsotti et al. [29].  

Functions 6-8 are designed specifically with color image 
segmentation in mind. They consist of factors that penalize 
over-segmented images, nonhomogeneous regions and 
normalize the function’s value. Functions 4 and 5 require 
histograms of the original and the segmented images. In 
our implementation each combination of red, green and 
blue color components were treated as one symbol. The 
histograms had separate bins for the following RGB colors: 
{0;0;1}, {0;0;2}, . . ., {255;255;255}. Joint histograms 
(required for mutual information) were optimized to reduce 
memory requirements (memory was reserved only for pairs 
of colors that exist in the images. 
 
Gradient magnitude in color images 

Determining the equivalent of gradient magnitude for a 
color image is problematic. Two different approaches are 
used in this paper. The first, a heuristic approach, finds 
gradient magnitude as the square-root of the sum of the 
squared partial derivatives of the individual image 
components [2]. This type of gradient will be called sum-of-
squares-gradient in the reminder of this paper. 

The second approach is based on principal component 
analysis. It was introduced by S. Di Zenzo and later 
extended by A. Cummani in [35]. This type of gradient will 
be called pca-gradient in the reminder of this paper.  

 
Algorithm selecting optimal clustering parameters 

The implementation of the algorithm is built around The 
Insight Toolkit Library and the filters available within this 

library. The algorithm flow is illustrated in figure 2. It 
proceeds as follows. (1) One of the test files is read. (2) The 
file is preprocessed using ITK curvature anisotropic 
diffusion filter [35, 2] (selective blurring used for noise 
reduction) and one of the mentioned gradient filters is 
applied. (3) The watershed transform is applied to the 
gradient image. The ITK implementation performs basic 
over-segementation reduction. Before transformation it 
thresholds the gradient image and removes small values. 
After transformation it merges shallow catchment basins 
with their neighbors if their depth does not exceed a value 
called the merging level [2]. Both threshold level and 
merging level are expressed as a percentage of the 
maximum value found in the gradient image. (4) The 
algorithm selects the next set of cluster analysis parameters 
(clustering method, similarity/dissimilarity coefficient, 
standardization method) and an attribute set that describes 
watersheds. (5) The watersheds are converted to an object 
described by attribute vectors (6) and the clustering is 
performed. (7) Using similarity hierarchy look-up tables are 
created. Each of the look-up tables allows one to generate 
a segmentation with a given number of classes (1, 2, 3…). 
(8) The LUTs are used to relabel watersheds. This results in 
a set of segmented images. (9) Each segmentation is 
assessed using all of the quality assessment functions, and 
the results are saved to the database. (10) the algorithm 
goes back to step 4. (11) Once all the possible 
segmentations for a given test image are completed, the 
algorithm aggregates the data from the segmentation. It 
finds the best segmentations according to each of the 
assessment functions. Then, for a particular number of 
classes, the algorithm finds the best (maximal or minimal - 
depending on the function) values of all the assessment 
functions that were calculated. It selects good 
segmentations. A segmentation is considered good when at 
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least one of the quality measures has a value differing by 
no more than 10% from the best segmentation (for this 
measure). (12) aggregated results are saved, and the 
algorithm proceeds to the next test file and goes back to 
step (1). 

 
Algorithm test 

The algorithm was tested on 9 images. The building_1, 
flower_3, seagull_3, wall_3, painting_2 images are freely 
available at http://cs.pollub.pl/english-segmentation-test-
images/, The Lena image is available at 
http://www.cosy.sbg.ac.at/~pmeerw/Watermarking/lena.html 
and the horses (197017), airplane (37073), and elephants 
(296059) images are a part of The Berkeley Segmentation 
Dataset [37] which is available at 
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/
bsds/). The test is an extended version of results presented 
in [38]. The results include new test images and lead to 
more comprehensive conclusions. The parameters used for 
selective blurring were conductance = 0.3, ∆T = 0.12 and 5 
iterations. The gradient filter used for a particular image is 
given in the figure description. For some images the 
resulting gradient image was thresholded to reduce over-
segmentation. After the watershed transformation, shallow 
catchment basins were merged with neighbors if their depth 
did not exceed a value called merging level [2] (also given 
in the figure description). Both threshold and merging levels 
were selected manually. Special care was taken to prevent 
these preprocessing steps from removing significant 
features. Figures: 3a - 11a depict the over-segmented test 
images that were input to the clustering algorithm. 

Four clustering algorithms, all standardization equations 
and all similarity/dissimilarity coefficients enumerated in 
previous sections were included in the test. No coefficients 
were used with Ward’s method as it has a built-in measure. 
Watershed attributes were grouped in the following sets: (1) 
average, (2) average and standard deviation, (3) average, 
standard deviation and size, (4) average and variance, (5) 
average, variance and size, (6) minimal value, (7) maximal 
value, (8) average and value spread, (9) average and 
minimal value, (10) average and maximal value, (11) 
average and both minimal and maximal value, (12) 
average, minimal value, maximal value and the value 
spread. All valid combinations of the parameters were used 
in the test. For each parameter set segmentations 
containing 2 to 20 classes were created. This resulted in a 
total of 225720 segmentations that were generated and 
assessed. 

 

   
(a)                                                 (b) 

Fig. 3. Oversegmentation and oversegmentation reduction results 
for the building_1 test image (384x384 pixels), (a) gradient: pca, 
threshold 0%, level 9%, catchment basins: 1873, (b) CLINK, 
Euclidean distance, no stadardization, attributes: average, 
variance, 19 classes 
 

Selected over-segmentation results are shown in figures 
3b-11b. The best performing parameters are listed in table 
1. All presented parameter sets produced 19 good 
segmentations according to the definition given in the 

previous section. In order to differentiate between them the 
parameters were ordered with respect to the Q function 
value. If, for a given test image, the list is longer than 10 
items, it is truncated. 

The number of classes in segmentation results depicted 
in figures 3b-11b is also selected on the basis of the Q 
function (segmentations containing 2 to 20 classes were 
generated for each parameter set). 
 

   
(a)                                                 (b) 

Fig. 4. Oversegmentation and oversegmentation reduction results 
for the flower_3 test image (384x384 pixels), (a) gradient: sum-of-
squares, threshold 5%, level 10%, catchment basins: 1965, (b) 
Ward’s minimum variance, no stadardization, attributes: average, 
standard deviation, 19 classes 
 

   
(a)                                                 (b) 

Fig. 5. Oversegmentation and oversegmentation reduction results 
for the seagull_3 test image (384x288 pixels), (a) gradient: pca, 
threshold 0%, level 1%, catchment basins: 1512, (b) CLINK, 
Euclidean distance, L1 stadardization, attributes: average, 
minimum, maximum, 18 classes 
 

   
(a)                                                 (b) 

Fig. 6. Oversegmentation and oversegmentation reduction results 
for the wall_3 test image (384x384 pixels), (a) gradient: pca, 
threshold 0%, level 8%, catchment basins: 2555, (b) Ward’s 
minimum variance, no stadardization, attributes: average, variance, 
18 classes 
 

   
(a)                                                 (b) 

Fig. 7. Oversegmentation and oversegmentation reduction results 
for the paiting_2 test image (384x288 pixels), (a) gradient: sum-of-
squares, threshold 5%, level 10%, catchment basins: 2144, (b) 
CLINK, Euclidean distance, no stadardization, attributes: average, 
minimum, maximum, spread, 20 classes 
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(a)                                                 (b) 

Fig. 8. Oversegmentation and oversegmentation reduction results 
for the lena test image (256x256 pixels), (a) gradient: sum-of-
squares, threshold 1%, level 10%, catchment basins: 3164, (b) 
Ward’s minimum variance, no stadardization, attributes: average, 
variance, 20 classes 
 

   
(a)                                                 (b) 

Fig. 9. Oversegmentation and oversegmentation reduction results 
for the horses (197017 from the The Berkeley Segmentation 
Dataset) test image (384x256 pixels), (a) gradient: pca, threshold 
0%, level 6%, catchment basins: 3303, (b) Ward’s minimum 
variance, sigma standarization, attributes: average, minimum, 5 
classes 
 

   
(a)                                                 (b) 

Fig. 10. Oversegmentation and oversegmentation reduction results 
for the airplane (37073 from the The Berkeley Segmentation 
Dataset) test image (256x171 pixels), (a) gradient: pca, threshold 
1%, level 1%, catchment basins: 2985, (b) Ward’s minimum 
variance, no standardization, attributes: average, variance, 20 
classes 
 

   
(a)                                                 (b) 

Fig. 11. Oversegmentation and oversegmentation reduction results 
for the elephants (296059 from the The Berkeley Segmentation 
Dataset) test image (384x256 pixels), (a) gradient: pca, threshold 
0%, level 6%, catchment basins: 3107, (b) Ward’s minimum 
variance, L1 standardization, attributes: average, 11 classes 
 
Table 1. Clustering parameters that gave 19 good segmentations.  
Parameters are ordered according to ascending Q function values. 
Q value Method Coeff. Std. Attr. set. 

Building_1 
427 CLINK Euclidean none avg. var. 
427 CLINK avg. Eucl. none avg. var. 
442 CLINK Euclidean sigma avg. 
442 CLINK Euclidean L1 avg. 
442 CLINK Euclidean L01 avg. 
442 CLINK Euclidean LS1 avg. 
442 CLINK Euclidean none avg. 

442 CLINK avg. Eucl. sigma avg. 
442 CLINK avg. Eucl. L1 avg. 
442 CLINK avg. Eucl. L01 avg. 

Flower_3 
2279 WARD none none avg. s.d. 
2441 WARD none none avg. var. 
3518 CLINK cos. sigma avg. 
3980 CLINK Euclidean none avg. s.d. 
3980 CLINK avg. Eucl. none avg. s.d. 
6436 CLINK Canberra sigma min. 

6540 CLINK 
Bray-
Curtis 

sigma min. 

7266 CLINK 
Bray-
Curtis 

sigma 
avg. min. 
max. spr. 

Seagull_3 

329 CLINK Euclidean L1 
avg. min. 

max. 

329 CLINK avg. Eucl. L1 
avg. min. 

max. 
339 CLINK Euclidean sigma avg. 
339 CLINK Euclidean L1 avg. 
339 CLINK Euclidean L01 avg. 
339 CLINK Euclidean LS1 avg. 
339 CLINK Euclidean none avg. 
339 CLINK avg. Eucl. sigma avg. 
339 CLINK avg. Eucl. L1 avg. 
339 CLINK avg. Eucl. L01 avg. 

Wall_1 
309 WARD none none avg. var. 
317 WARD none L1 avg. 

357 CLINK 
Bray-
Curtis 

none avg. var. 

384 CLINK 
Bray-
Curtis 

L1 avg. 

384 CLINK 
Bray-
Curtis 

LS1 avg. 

384 CLINK 
Bray-
Curtis 

none avg. 

414 CLINK Euclidean LS1 avg. 
414 CLINK avg. Eucl. LS1 avg. 

427 CLINK 
Bray-
Curtis 

none avg. s.d. 

Painting_2 

241 CLINK Euclidean none 
avg. min. 
max. spr. 

241 CLINK avg. Eucl. none 
avg. min. 
max. spr. 

244 CLINK Euclidean L01 
avg. min. 

max. 

244 CLINK avg. Eucl. L01 
avg. min. 

max. 
250 CLINK s.d. none avg. var. 

261 CLINK Euclidean none 
avg. min. 

max. 

261 CLINK avg. Eucl. none 
avg. min. 

max. 
262 CLINK s.d. none avg. s.d. 
277 CLINK Euclidean LS1 avg. max 

 

lena 
204 WARD none none avg. var. 
243 WARD none L1 avg. 

252 CLINK Euclidean L1 
avg. min. 

max. 

252 CLINK avg. Eucl. L1 
avg. min. 

max. 

262 CLINK Euclidean L01 
avg. min. 

max. 

262 CLINK avg. Eucl. L01 
avg. min. 

max. 

266 CLINK Euclidean sigma 
avg. min. 

max. 

266 CLINK avg. Eucl. sigma 
avg. min. 

max. 

275 CLINK Euclidean none 
avg. min. 

max. 
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275 CLINK avg. Eucl. none 
avg. min. 

max. 
Horses-197017 

732 WARD none sigma avg. min. 
816 CLINK Euclidean none avg. var. 
816 CLINK avg. Eucl. none avg. var. 

1174 UPGMA Canberra sigma max. 
Airplane-37073 

56 WARD none none avg. var. 
62 WARD none none avg. 
64 WARD none sigma avg. 
68 WARD none L1 avg. 
70 WARD none L01 avg. 
86 WARD none sigma avg. max 
90 WARD none none avg. s.d. 

Elephants-296059 
482 WARD none L1 avg. 
517 WARD none sigma avg. 
522 WARD none LS1 avg. 
580 WARD none L01 avg. min. 
586 WARD none none avg. var. 
601 WARD none L01 avg. var. 
602 WARD none L01 avg. 
644 CLINK Bray-

Curtis 
LS1 avg. min. 

 
Conclusions 
 As expected, the same parameters don’t give the best 
results in the case of all test images. However, conclusions 
on parameters that produce good segmentations may be 
drawn based on table 1. 
 As shown in table 1 in case of the Wall_1, Lena and 
Airplane-37073 images, the set of parameters that allowed 
for obtaining the best segmentation are: (1) Ward’s 
minimum variance method, (2) no standardization and (3) 
an attribute set consisting of watershed’s average and its 
variance. It is also worth noting that, in the case of Flower_3 
and Elephants-296059 images, it is listed among the best 
sets, and the Q function values are not far from the minimal 
(the best) value for those images (2441 vs 2279 and 586 vs 
482 respectively). These are small differences considering 
that the worst Q function values are close to 100000 and 
25000 respectively. This means that, for both images,  
several parameter sets produce almost equally good 
segmentations. 
 In case of the Building_1 and Horses-197017 images 
the following set produced good results: (1) CLINK 
clustering method, (2) Euclidean distance, (3) no 
standardization, (4) an attribute set consisting of 
watershed’s average and variance.  
 It is also worth noting that the (1) CLINK clustering 
method, combined with (2) Euclidean distance, average 
Euclidean distance or Bray-Curtis coefficient and an 
(3) attribute set containing more than one attribute produces 
good results. This is the case for eight test images.  
 Other clustering methods (SLINK and UPGMA) do not 
appear in table 1. While they don’t generate good 
segmentations as defined by the assessment functions 
(general use), they are useful for other purposes. As shown 
in the authors’ previous work, the SLINK method combined 
with  watershed size is useful in the segmentation of noisy 
areas [38], and the UPGMA method is the optimal choice 
for merging watersheds in gray-scale CT scans [39].  
 The presented algorithm allowed for discovering 
clustering parameters that produce good segmentations 
(from over-segmented images). A simplified version of the 
algorithm may be used for automatic over-segmentation 
reduction (the algorithm needs only to use the best 
parameter sets, to assess the results and to select the best 
segmentation).  
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