
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 7/2016 75

Marcin CEGIELSKI

Technical University of Lodz

doi:10.15199/48.2016.07.16

Parallel computation of transient processes on OpenCL
framework

Abstract. Parallel execution of calculation of transient analysis is based on a split-level model into sub-systems, which in certain time increments are
calculated independently of each other. Each such process has a high computational complexity. The process of implementing the calculation allows
the use of parallel systems to calculations based on the use of the GPU, whose dynamic growth has been observed for several years. The article
presents a brief description of parallel computing systems based on the OpenCL platform that uses GPUs. There is described the ability to
implement the algorithm using this platform. There is also discussed, the timing to perform operations on GPU in relation to the calculations for
classic CPU.

Streszczenie. Równoległa realizacja obliczeń analizy stanów przejściowych bazuje na podziale na poziomie modelu na pod-układy, które w
określonych krokach czasowych obliczane są niezależnie od siebie. Każdy taki proces charakteryzuje się dużą złożonością obliczeniową. Proces
realizacji obliczeń pozwala na zastosowanie do obliczeń systemów równoległych opartych o wykorzystanie GPU, których dynamiczny rozwój jest
obserwowany od kilku lat. W artykule przedstawiono krótką charakterystykę równoległych systemów obliczeniowych opartych o platformę OpenCL
wykorzystującą procesory GPU. Opisano możliwość implementacji algorytmu z wykorzystaniem tej platformy. Omówiono zależności czasowe
realizacji obliczeń na procesorach graficznych w stosunku do obliczeń na klasycznych CPU. (Obliczenia równoległe na platformie OpenCL w
analizie stanów przejściowych).

Keywords: parallel computation, transient processes, GPU, diakoptic.
Słowa kluczowe: równoległe obliczenia, procesy przejściowe, procesory graficzne, diakoptyka.

Introduction
 Computation of complex systems is always connected
with necessity of making a large number of step by step
toilsome calculations. Firstly, it causes a huge waste of
time, secondly, the possibility that mistakes and in-
accuracies will appear is increasing very fast. Moreover,
existing novel computer technologies do not eliminate fac-
tors mentioned above. Therefore, it is necessary to look for
possible variants of changing a particular serial complicated
process of computation for a few independent simplest
procedures of calculation, which would enable to get the
same solution in several computational stages. Mathe-
matical theory which is needed to get this attitude is known
and was created and systematized in Kron's work. [1].

Principles of diakoptic method
Principles of parallelization technique of diakoptic method
was shown in [2]. The main idea of the diakoptic methods
is partitioning of scheme into sub-schemes. The new-
created mathematical model is shown in equations (1) i (2):

(1) 0; 1,2,...,i iF (X ,V)= i N

(2) 0G(X,V)=

where Xi is a vector of of internal variables of the i-th circuit;
X=X1,X2, …, Xn)

T; V, Y are vectors of additional input and
output variables; Fi(

.) is a set of differential equations that
describe dynamic processes in the i-th sub-circuits; G(.) is a
set of algebraic equations that represents the separate sub-
schemes interaction.
 The essence of the diakoptic approach is an
independent solution (numerical integration) of each
equation (1), that represents i-th sub-schema, and
sequential reconciliation of obtained results by solving
equations (2) . It is possible to solve equations (1) both in
particular time intervals and in separate iterations. The
integration process of these equations in time domain is
known as waveform relaxation method and as the practice
has shown is the most effective [9] [10] [11].
 This approach involves the procedure of reconciliation of
external variables between successive steps of
computations. Since transient values of external variables

come from the previous results of the step of computations
of the mathematical model, we must use numerical
methods of integrations. Explicit methods are very simple
and what is more they require much less time for
calculations although the accuracy of the results obtained
with their help strongly depends on the choice of the step
which should be small enough. Incorrect selection of the
interval reconciliation of external variables can cause
instability calculations of the whole process. The main
important element of computations is the problem of
stability estimation. Improving the stability of the compu-
tation it is achieved by minimizing the error between the
corresponding coefficients of the divided parts of the model.

Diakoptic approach is used in the analysis of large
dynamic models. Particularly in areas such as
electromagnetism, electronics or large power grids [13].

Open CL framework
 OpenCL™ is the first free open standard of parallel
programming for different vendors' platform of modern
processors which can be found in personal computers i
servers equipped with GPU systems. OpenCL (Open
Computing Language) significantly improves application's
speed and its adaptation ability to different hardware for a
wide range of applications in numerous market categories
such as gaming and entertainment or scientific and medical
programs. One code can be executed as well on the CPU
as GPU, DSP, FPGA and other equipment.
Creating applications for heterogeneous parallel processing
platforms using traditional approaches to programming CPU
and multi-GPU can be difficult. In addition, there are many
methods that are very different from each other. Parallel
programming models working on CPU processors are
usually based on standards, but they assume a shared
address space and do not include vectors operations.
Parallel programming models designed for GPU must take
into consideration complex hierarchical systems of memory
and vector operations, but they traditionally are specific for
a given system platform, which is provided by the hardware
vendor. These restrictions make it difficult for developers to
gain access to computing power of various types of
general-purpose graphic processors and other types of
processors from one common source code base.

76 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 7/2016

The basic idea of OpenCL is based on using a
hierarchical model that includes: Platform Model, Memory
Model, Execution Model and Programming Model.

Platform model contains one host and one or more
computing devices, each of them with one or more
computational units consisting of one or more elements of
data processing. OpenCL application is carried out as a
combination of host code and code of device kernel. Some
part of host code OpenCL application is running on the host
processor in accordance with its native model of given
host's platform. OpenCL application’s host code is executed
as commands from the host to the OpenCL device. The
device executes computing commands within devices.

An OpenCL application is implemented as both host
code and device kernel code. The host code portion of an
OpenCL application runs on a host processor according to
the models native to the host platform. The OpenCL
application host code submits the kernel code as
commands from the host to OpenCL devices. An OpenCL
device executes the command’s computation on the
processing elements within the device.

Developers provides programs as a form of C++
OpenCL source text or binary source files IL appropriate for
the environment, on which given platform OpenCL is
running. OpenCL platform provides a compiler that
translates the input program with both figures into
executable program objects. The device code compiler can
be used online or offline. Online compiler is available during
the execution host's program using standard interfaces API.
The compiler in offline mode is invoked beyond the control
of the host program, using methods specific to a given
platform. OpenCL runtime allows developers to load a
previously compiled executable program to the device and
to run it. [6]
The framework contains the following components:

1. OpenCL Platform layer: The platform layer allows
the host program to discover OpenCL devices and
their capabilities and to create contexts.

2. OpenCL Runtime: The runtime allows the host
program to manipulate contexts once they have
been created.

3. OpenCL Compiler: The OpenCL compiler creates
program executables that contain OpenCL kernels.
The OpenCL C programming language
implemented by the compiler supports a subset of
the ISO C99 language with extensions for
parallelism.

GPU system
 One of the new methods of parallel computations is the
usage of GPU processors. A GPU consists of a set of cores
with a hierarchical shared memory. Differences between
SMP parallel systems (Symmetric Multi-Processor) and
GPU systems are clear.
 Firstly, the number of the computational cores. For
example GPU system is connected by devices. One device
consists of 256 graphical cores. Multi-Core system have 4
or 8 independent threads units.
 Secondly, GPU works in batch mode. Computation
process needs extra time for loading and saving data
between system memory and GPU system memory.
 Thirdly, the management of SMP system is easier than
GPU system.
CPU and GPU processors in the computational system can
be used in the same time.

A GPU is a massively parallel SPMD (single program,
multiple data) processor. It is generally embedded in a
graphics card (the device) connected to a computer (the
host) via a PCI bus interface. The device also embeds local

memory, available for graphics or GPU use. The device
memory contains the GPU program code, and all the data
that the GPU programs manipulate. The host can allocate
blocks in the device memory, transfer data blocks from the
host memory to the device memory and vice versa, as well
as execute kernels (GPU programs) to manipulate the data
in the device memory.

GPU systems are oriented on parallel computation with
single precision floats. They can also use double with less
speed of computation.

In the next paragraphs elements of operating system of
GPU system are discussed.

Principles of parallel computation program
 The parallel algorithm of computing transient processes
in electrical circuits or in other dynamic systems according
to diakoptic approach can be shown with block scheme in
figure 1 and [3].

Fig. 1. Schema of diakoptic computations of dynamic system

As can be noticed, the parallelism of the process of the
particular algorithm is well specified while the loss for
making the computation of the single sub-block is much
bigger than time which is needed for computing and
negotiating external variables. It is important to notice a
certain asynchrony of the described process, which lies in
the fact that the external variables are calculated with a time
lag in relation to the internal variables.

The main feature of the diakopitc's approach is to divide
variables of set of equations into two parts, one of which
used an explicit numerical integration method, for which the
improper selection integration step can be a source of
instability in the calculation.

Among these disadvantages the main one is the
potential instability, which can be controlled on a stage of
external variables reconciliation [9].
Nowadays there are known methods that allow significantly
improving the stability of the calculations and also allows to
predict potential instability[7].
 We assume that the number of GPU devices is less
than the number of separated computation tasks. This
implies the need for queuing different tasks and their
dynamic separation between the GPU's. After calculating all
the tasks the procedure for reconciliation the variables is
performed (2), which is performed as a single process.
When the reconciliation is done the system allocates the
next task with the new step.
 The key element of the system which affects the
calculation time is the optimum allocation of tasks (1)
between the GPU devices and computational complexity of
tasks.
Distribution of tasks in computation system
 Suppose that we have any but a fixed number of
independent computation tasks which has constant number
of internal variables.

PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 7/2016 77

Diakoptic division of the model into parts allows to split
external and internal variables in sub-models, but the
number of variables (the size of sub-models) can be
different. It comes from the assumption that the division is
made not on the level of mathematical model but on the
level of model scheme.
 For the optimal tasks allocation the knowledge about the
computation power and number of GPU devices is needed,
It must be known before starting of computation. The model
should be divided in equal parts with possibly the same
number of variables.

Schema of computational system
 System of the threads management is based on the
barrier.
The main program controls the whole process, allocates the
tasks, stores and connects the results from the particular
steps of computation and makes the changes of the
computation parameters before the next step.
The course of the whole process can be shown by means
of the scheme from figures 2.

Fig. 2. Diagram of GPU computational system

The beginning of the computation is an analyse of the
computation complexity, quantity of tasks and available
GPU hosts and devices. The next step is the compilation of
the code of the tasks and preparing of data buffers in the
following order:

1. Query host for OpenCL devices
2. Create a context to associate OpenCL device

3. Create programs for execution on one or more
associated devices

4. Select kernels to execute from the programs
5. Create memory objects accessible from the host

and/or the device
6. Copy memory data to the device as needed
7. Provide kernels to command queue for execution
8. Copy results from the device to the host

Step from 6 to 8 are processed in GPU hosts.
The main program waits for the end of the all tasks (GPU
hosts). After receiving the solution the phase of the external
variables, reconciliation is performed and also the setting of
the new integration parameters, which are the base for the
beginning of next tasks realization. Strategy of computation
of a new step of integration was presented in [8].

Process of computation
 The main idea of the diakoptic method is a division onto
parallel tasks, which can be running independently. The
computation process is asynchronous and the expense of a
particular computation task can be diverse. Therefore full
exploitation of the computation power can be impossible.
The estimation of the computation speed can be
complicated by the necessity of reconciliation of the
external sub-circuit variables values and hard to estimate
quantity of the repetition of computation steps which has to
be repeated. The value of the repetition can be estimated
according to carried out computation experiments in which
the proper criteria of the estimation of the stability were
applied. [4] [5]. Using of the proper criteria allows to accept
the estimated increasing integration step value. The time of
the calculation of the i-th task is defined by formula (3).

(3) i i int comp load savet (n)= h t n +t +t +t

where h mean the average step of the integration of the i-th
sub-circuit, tint the time of the computation (integration) of
one step, dependent on the size of differential equations i-
th sub-circuit, tcomp time of loading and preparing program to
running, tload and tsave time of the transfer of data to and from
the GPU host.
The time of computation of the main step with alignment of
external variables (2) is given by (4)

(4) s i recont = max(t (n))+t

where max(ti(n)) maximum computation time of equation (3),
trecon time of reconciliation and correction of external
variables.
 The total time of computations is defined by formula (5)

(5)
1

N

TCO s init close
s=

t = t +t +t

where tinit and tclose times initialization and closing of
OpenCL environment (tinit).
You will notice that there is a correlation between the
amount of the main steps and the time of calculations tasks
in one step. Increasing the pace of integration accelerates
the calculations, but can potentially lead to instability
calculations after several stages of approval.
The criteria of stability [5] can be used in the same time
then computations of the sub-models. Paired external
variables can be tested in parallel with the process of their
calculations in tasks. We can decide the quantity of iteration
step independent in all tasks. This means that you can
speed up calculations by changing the integration step only
in certain sub-systems, and not all.

78 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 7/2016

Times in formula 3 was estimated in computational
experiments. We can notice, time of building GPU program
is bigger then time of transfer of data between host
operational memory and GPU internal memory. It is
recommended to use the same compiled program in all
steps of computation equations (2). The method of
correction of external variables can be computed by
resources of host computer.
The time of the calculation of the i-th task is reduced to (6).

(6) i i int load savet (n)= h t n +t +t

Times of initialization and closing OpenCL framework are

small according time ti(n). We can assume, tinit≈0 and

tclose≈0. Simplify the total time of computation is given by
formula (7).

(7)
N

TCO s comp
s=1

t = t (n)+t

where tcomp is the maximum time of compilation of all
OpenCL programs to binary source files IL, used in
computations (6).

Fig. 3. Times of transferring data between host and OpenCL
framework using GPU system

Times of transferring data of sub-circuits represented by (3)
between host and OpenCL framework on GPU device is
shown on fig. 3 and CPU device on fig. 4.

Fig. 4. Times of transferring data between host and OpenCL
framework using CPU system

Computational experiments were performed for different
sizes of the data system of equations (2) from 1MB to 8MB.
“allocation” is the time of booking a data buffer in the GPU
device. The “loading data” is the time of data transfer from
host into a buffer in GPU device. The “saving data” is a time
of receiving computed data to the host. The “building” is a
time of compiling and transferring base code of the

program. Time of transferring compiled code into GPU
device is similar to the time of allocation. The cost of added
elements of communication between host and GPU device
is short. Value of the time ts(n) and number of reconciliation
determines the speed of the whole method of calculation of
transient processes in equation (7).

Conclusion
 In this article the model of computations in CPU,GPU
systems is presented, which is optimized for parallel
execution of tasks of analyses of transient processes. The
schema of distributions of tasks in heterogeneous and
steering of processes were shown. Proposed concept of the
computation system with OpenCL framework was analysed
according to the time of compilation, loading and saving
data in GPU system. The time of building application in the
OpenCL framework has a big cost against the times of
transferring data. Times of buffering and copping data are
acceptable.

The attempt of the estimation of the total time of
computation was made for the diakoptic model of the
analyses of transient processes.

Author: dr inż. Marcin Cegielski, Politechnika Łódzka, Instytut
informatyki, ul. Wólczańska 215, 93-005 Łódź, E-mail:
marcin.cegielski@p.lodz.pl.

REFERENCES
[1] K ron G. , A set of principles to interconnect the solution of

physical systems, Jurnal of applied Physics, vol 24, no. 8,
August 1953, page. 980

[2] Stakhiv P., Rendzinyak S., Krupskyy B., Parallelization of
Diacoptic Methods for Multiprocessor Computing Systems,
Bulletin of The Polish Academy of Sciences Technical
Sciences Vol. 51, No. 4, 2003

[3] Byczkowska-Lipińska L., Cegielski M., Parallel Computations of
Transient Processes in The Electric Circuits in Cluster
Systems, Przegląd elektrotechniczny, 2/2007, nr 5

[4] Cegielski M., Stachiw P., Stability of parallel computations of
transient processes in the electric circuits, Przegląd
elektrotechniczny, 2/2007, nr 5

[5] Stakhiv P., Cegielski M., New approach to stability of parallel
parallel computations of transient processes, Przegląd
elektrotechniczny, 12/2008, nr 84

[6] Howes L., Munshi A., The OpenCL Specification, Version: 2.1,
Khronos OpenCL Working Group, 29 January 2015

[7] Cegielski M., Stachiw P., Stability of parallel computations of
transient processes in the electric circuits, Przegląd
elektrotechniczny, 2/2007, nr 5

[8] Cegielski M., Stachiw P., Evaluation of criteria New approach to
stability of parallel computations of transient processes,
Przegląd elektrotechniczny, 2008, nr 6

[9] Stakhiv P., Rendzinyak S., Krupskyy B., Parallelization of
Diacoptic Methods for Multiprocessor Computing Systems,
Bull. Pol. Ac.: Tech., Vol. 51, No.3 (2003), pp. 381-394

[10] Uriarte F. M., On Kron's diakoptics, Electric Power Systems
Research, 2012, Vol. 88, pp. 146-150

[11] Lelarasmee E., Ruehli E., A.L. Sangiovanni-Vincentelli, The
Waveform Relaxation Method for Time-Domain Analysis of
Large Scale Integrated Circuits, Computer-Aided Design of
Integrated Circuits and Systems, IEEE, Vol. 1, Issue: 3, pp.
131-145

[13] Notaros B., Ilic M., Olcan D., Djordjevic M., Manic A.,
Chobanyan E., Hybrid higher order numerical methods in
electromagnetic, International Conference on Electromagnetics
in Advanced Applications (ICEAA), 2014, pp. 411-414

