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Abstract. The purpose of this research is to propose a new memristor-based synaptic device for use in perceptrons. A synaptic circuit made by two 
memristors is analyzed and a linear relationship between time and synaptic weight is obtained for rectangular input pulses. For adjusting the 
synaptic weight pulses with long duration and high magnitude are used. The operating input signals are with short duration and low amplitude to 
avoid altering the memristor state. A successful operation of the new memristor linear synapse is established after scaling the synaptic weight. 
 
Streszczenie. W pracy zaproponowano nowe urządzenie synaptyczne bazujące na memristorze, które można użyć w perceptronach. 
Przeanalizowano obwód synaptyczny zbudowany z dwóch memristorów i dla prostokątnych impulsów wejściowych uzyskano liniowe zależności 
pomiędzy czasem a wagą synaptyczną. W celu dopasowania wag synaptycznych użyto impulsów o długim czasie trwania i dużej amplitudzie. 
Sygnały wejściowe posiadają krótki czas trwania oraz małą amplitudę w celu uniknięcia zmiany stanu memristora. Po wyskalowaniu wagi 
synaptycznej uzyskano skuteczne działanie nowego memristora. (Synteza i analiza perceptronu opartego na memristorze dla emulacji funkcji 
logicznej) 
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Introduction 
The artificial neural network simulates the structure, the 

processing methods and the system operation of biological 
neural system [1]. Many researches are attracted by neural 
networks advantages and applications – good performance, 
parallel processing, self learning, self adapting and fault 
tolerance. The perceptron is simplest kind of neural 
network, it is a nonlinear neuron and it can implement basic 
learning and parallel processing and also it can emulate 
simple logical functions [2, 3]. For the classical neurons 
CMOS weighting circuits and software implementations are 
used in synaptic circuits [4]. In the last few years, many 
scientists pay attention to memristor-based neural networks 
because memristor elements and circuits are capable of 
emulating the biological synapses by changing and 
retention of their state [5, 6]. The memristor element was 
predicted in 1971 by Prof. Leon Chua and its physical 
prototype was created in 2008 by Stanley Williams in the 
Hewlett-Packard research labs [7, 8]. The basic useful 
property of this new nonlinear electrical element is 
memorizing the amount of charge that has passed through 
it. The memristor is non-volatile element and it could retain 
its state and resistance for a very long interval. This ability 
is useful for application of the memristor in neural synapses 
schematics. For simulating new memristor-based neural 
networks several different models were used in the 
researches [8, 9, 10]. Also several neural memristor 
synapses schematics are investigated, like bridge-synapse 
and simple one-memristor synapse for neurons [4, 13]. One 
of the main advantages of the memristor-based synapses is 
the nanoscale dimensions of memristor and the ability for 
very-high dense integration of memristor crossbar-like 
structures [11, 15, 16, 17, 18]. The lack of analysis of linear 
memristor-based synapses with two serial-biased 
memristors is a prerequisite for the next investigations [11, 
12, 13, 14, 15, 18]. 

In Section 2 a perceptron circuit for emulating the logical 
functions OR and AND is analyzed. The memristor-based 
serial synapse model is analyzed and validated in Section 
3. In Section 4 the concluding remarks are presented. 
 
A Simple Perceptron Circuit Investigation 

The perceptron for emulating the logical functions OR 
and AND is presented in Fig. 1 [2]. The current time steps 
number is denoted with t. The input binary signals x1(t) and 

x2(t) are multiplied by the initial synaptic weights w1(t) and 
w2(t). The weight coefficients are based on the transfer 
function of a circuit containing memory elements – 
memristors, and a possibility for updating the weights exists 
with changing the memristor elements state variables. Then 
the signals obtained are submitted to a summing device 
with a shift coefficient b and the output signal s(t) of the 
summing device is given with the next formula [2, 3]: 
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 The signal s(t) then is set to a device with relay 
activation function and with an activation threshold of Θ = 0. 
The signal y(t) after the relay element output is [2, 3]: 
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Fig.1. Schematic of a simple classical two-input perceptron circuit 
 
 The error signal e(t) is obtained using the current value 
of the output signal y(t) and the desired output signal d(t) 
evaluated with respect to the logical functions OR and AND 
respectively [2, 3]. The difference between the signal d(t) 
and the output signal y(t) is the error signal e(t) [2, 3]: 
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 The error signal e(t) is then multiplied by the input 
signals x1(t) and x2(t), respectively and after that we obtain 
the correcting adjustments for the synaptic weights w1 and 
w2 and for the shift coefficient b also [1, 2]: 
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 The new values of the synaptic weights and the shift 
coefficient are obtained by summing their old values with 
the synaptic weights adjustments: 

(5)                     
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 The initial values of the synaptic weights and of the shift 
coefficient are chosen with respect to the possibility for 
separating the output values of the logical 1 and 0 for the 
logical functions OR and AND. The initial data are set to the 
inputs of the perceptron scheme. The results from the 
training algorithm of the neural network are presented in 
Table 1 and Table 2, respectively. The results confirm that 
this perceptron successfully emulates the logical functions 
OR and AND for training and learning the neural network for 
4 epochs. The 5-th epoch is additional and it is put to 
confirm that after adjusting the synaptic weights they remain 
constants if we apply another logical sequence of the binary 
input signals x1 and x2. After the final epoch the error signal 
is e(t) = 0. The weights adjustments Δw and Δb have values 
of -1 and 1. Using the final values of the synaptic weights of 
adjusted perceptron from Table 1 and Table 2 and formulas 
(1) and (2) we can obtain the dividing line equation for the 
logical functions OR and AND respectively [1, 2]: 
 

(6)            1 1 2 2 0final final finalw x w x b     
 

Table 1. Results from the Perceptron Learning Process 
For Emulating the Logical Function OR 
 

Epoch x1 x2 d w1 w2 b x1*w1 x2*w2 s y e Δw1 Δw2 ∆b w1_neww2_new b_new

0 0 0 0 0 0 0 0 0 1 ‐1 0 0 ‐1 0 0 ‐1

0 1 1 0 0 ‐1 0 0 ‐1 0 1 0 1 1 0 1 0

1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0

1 1 1 0 1 0 0 1 1 1 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 ‐1 0 0 ‐1 0 1 ‐1

0 1 1 0 1 ‐1 0 1 0 1 0 0 0 0 0 1 ‐1

1 0 1 0 1 ‐1 0 0 ‐1 0 1 1 0 1 1 1 0

1 1 1 1 1 0 1 1 2 1 0 0 0 0 1 1 0

0 0 0 1 1 0 0 0 0 1 ‐1 0 0 ‐1 1 1 ‐1

0 1 1 1 1 ‐1 0 1 0 1 0 0 0 0 1 1 ‐1

1 0 1 1 1 ‐1 1 0 0 1 0 0 0 0 1 1 ‐1

1 1 1 1 1 ‐1 1 1 1 1 0 0 0 0 1 1 ‐1

0 0 0 1 1 ‐1 0 0 ‐1 0 0 0 0 0 1 1 ‐1

0 1 1 1 1 ‐1 0 1 0 1 0 0 0 0 1 1 ‐1

1 0 1 1 1 ‐1 1 0 0 1 0 0 0 0 1 1 ‐1

1 1 1 1 1 ‐1 1 1 1 1 0 0 0 0 1 1 ‐1

0 0 0 1 1 ‐1 0 0 ‐1 0 0 0 0 0 1 1 ‐1

0 1 1 1 1 ‐1 0 1 0 1 0 0 0 0 1 1 ‐1

1 0 1 1 1 ‐1 1 0 0 1 0 0 0 0 1 1 ‐1

1 1 1 1 1 ‐1 1 1 1 1 0 0 0 0 1 1 ‐1

1

2

3

4

5

 
 
Table 2. Results from the Perceptron Learning Process 
For Emulating the Logical Function AND 
 

Epoch x1 x2 d w1 w2 b x1*w1 x2*w2 s y e Δw1 Δw2 ∆b w1_neww2_new b_new

0 0 0 0 0 0 0 0 0 1 ‐1 0 0 ‐1 0 0 ‐1

0 1 0 0 0 ‐1 0 0 ‐1 0 0 0 0 0 0 0 ‐1

1 0 0 0 0 ‐1 0 0 ‐1 0 0 0 0 0 0 0 ‐1

1 1 1 0 0 ‐1 0 0 ‐1 0 1 1 1 1 1 1 0

0 0 0 1 1 0 0 0 0 1 ‐1 0 0 ‐1 1 1 ‐1

0 1 0 1 1 ‐1 0 1 0 1 ‐1 0 ‐1 ‐1 1 0 ‐2

1 0 0 1 0 ‐2 1 0 ‐1 0 0 0 0 0 1 0 ‐2

1 1 1 1 0 ‐2 1 0 ‐1 0 1 1 1 1 2 1 ‐1

0 0 0 2 1 ‐1 0 0 ‐1 0 0 0 0 0 2 1 ‐1

0 1 0 2 1 ‐1 0 1 0 1 ‐1 0 1 ‐1 2 2 ‐2

1 0 0 2 2 ‐2 2 0 0 1 ‐1 ‐1 0 ‐1 1 2 ‐3

1 1 1 1 2 ‐3 1 2 0 1 0 0 0 0 1 2 ‐3

0 0 0 1 2 ‐3 0 0 ‐3 0 0 0 0 0 1 2 ‐3

0 1 0 1 2 ‐3 0 2 ‐1 0 0 0 0 0 1 2 ‐3

1 0 0 1 2 ‐3 1 0 ‐2 0 0 0 0 0 1 2 ‐3

1 1 1 1 2 ‐3 1 2 0 1 0 0 0 0 1 2 ‐3

0 0 0 1 2 ‐3 0 0 ‐3 0 0 0 0 0 1 2 ‐3

0 1 0 1 2 ‐3 0 2 ‐1 0 0 0 0 0 1 2 ‐3

1 0 0 1 2 ‐3 1 0 ‐2 0 0 0 0 0 1 2 ‐3

1 1 1 1 2 ‐3 1 2 0 1 0 0 0 0 1 2 ‐3

1

2

3

4

5

 
 

 The classification results for the adjusted memristor 
perceptron are presented in graphical form in Fig. 2 and 
Fig. 3 respectively. 
 

A Simple Memristor-Based Synaptic Circuit Analysis 
and Calculations 
 The schematic of the new memristor-based synapse 
device is presented in Fig. 4. It consists of two serial-
connected memristors in opposite directions. 
 For simplifying the circuit analysis the linear drift 
memristor model [8] and the limiting conditions of the 
Boundary Condition Memristor Model (BCM) [9] are used. 
The basic differential equation for the memristor elements 
used in the circuit is [8, 9]: 
 

(7)                            
2
ONRdx

i
dt D


  

 

where x is the state variable, η is a polarity coefficient with 
values of 1 or -1, µ = 1.10-12 m2/(V.s) is the ionic drift 
mobility, RON = 100 Ω is the resistance of the memristor in a 
fully closed state, D = 10 nm is the length of the memristor 
element, and i is the intensity of the current flowing through 
the memristor circuit. 
 

 

Fig. 2. The classification result of the adjusted perceptron for 
emulation the logical function OR according to Table 1 
 

 

Fig. 3. The classification result of the adjusted perceptron for 
emulation the logical function AND according to Table 2 
 

 
Fig. 4. Memristor-based serial synapse circuit 
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 After integrating (7) we obtain the analytical expression 
of the state-flux relationship of the memristor element [8]: 
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 The quantity x0 is the initial value of state variable of the 
memristor [8]. The state variables for the memristors M1 and 
M2 will be denoted with x| and x|| respectively. For the circuit 
investigated in initial moment the first memristor M1 is set in 
fully open state and x|

0 = 0, and the polarity coefficient is η = 
1 because the memristor is forward-biased. The second 
memristor is set in a fully closed state and the state variable 
is x||

0 = 1. Due to its reverse-biasing in the circuit with 
respect to the first memristor the coefficient η has a value of 
-1. The memristance of the first memristor M1 is expressed 
with the next formula [8]: 
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 The resistance of the second element M2 is [8]: 
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 The quantity ROFF presents the resistance of the 
memristor element in a fully open state. According to the 
Kirchhoff’s Voltage Law and using (9) and (10) we obtain 
the equivalent resistance of the memristor-based synaptic 
circuit Req in a given moment t: 
 

(11)      1 2
' '' ' '', ,eq OFFR M M Rt x x x x    

 

 The transfer function (synaptic weight) w of the 
memristor-based synapse given in Fig. 4 is: 
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 Using the Ohm’s Law for the same circuit we can obtain 
a similar relationship but using a voltage input signal uin: 
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 Formulae (12) and (13) give us the possibility for 
adjusting the synaptic weight to use rectangular current or 
voltage pulses with an appropriate duration [4]. For positive 
weight adjustment a positive pulses are needed and after 
using negative pulse voltage we will have negative weight 
adjustment of the synaptic weight. In the initial moment the 
synaptic weight of the memristor-based synaptic circuit has 
its minimal value wmin [7, 8, 9]: 
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 The maximal synaptic weight wmax for the memristor-
based circuit is [7, 8, 9]: 

(15)
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 After comparing the range of adjustment of the 
memristor synaptic weight with the results presented in 
Table 1 and Table 2, it is clear that the weight range of the 
circuit proposed could not covers the adjustment range 
needed for the logical functions emulation. But if we use a 
scaling mathematical process we can expand and translate 
the first range so that it will coincide with the range needed. 
The length of the first range is Δw1max = 0.9937 – 0.0062 = 
0.9875. The second range needed has the following length: 
Δw2max = 2 – (-3) = 5. The ratio of a = Δw2max / Δw1max = 
5.0633 will be used for amplification the output signal of the 
memristor circuit which is the synaptic weight value for input 
pulse voltage with a magnitude of 1. After the amplification 
a summing process of the signal obtained with a constant 
voltage with a value of u1 = -3 – (0.0062*5.0633) = -3.0314 
is used to make match the synaptic weight intervals. 
 According to Tables 1 and 2 the synaptic weight 
adjustment has values of Δw = 1 or Δw = -1. Using division 
with the ratio a = 5.0633 we obtain the real synaptic 
adjustment for the memristor circuit: |Δwreal|= 1/5.0633 = 
0.1975. If a rectangular pulse with a magnitude of 1 V is 
applied to the circuit input and using (13) we can calculate 
the pulse duration needed for adjusting the synaptic weight: 
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 The same input of the synaptic circuit is used for 
applying the operating pulses needed for coding the signals 
x1 and x2. To avoid altering the memristors states during the 
operating signals the duration of the logical signals x1 and x2 
have to be many times shorter with respect to the pulse 
width of the adjusting signals. Also we can choose the 
logical signals level to be several times lower than the 
adjusting signals. 
 To avoid shifting of the boundary between the doped 
and un-doped regions of the memristors due to the 
memorizing effect we could use the following levels for the 
input signals x1 and x2: for logical 1 a voltage pulse with a 
level of 0.2 V and for logical 0 – a level of - 0.2 V, 
respectively. The informational signals x1 and x2 could have 
duration with a value of 320 µs – about 10 times shorter 
than the width of the adjusting signals. 
 For applying the informational and adjusting signals to 
the memristor-based synapse input we could use different 
time intervals and also a multiplexer device is needed. A 
similar perceptron for emulating the logical function OR 
could be realized in MATLAB environment using the Neural 
Network Toolbox [14]. Follows the MATLAB code for the 
simulation: 
 

x = [0 0 1 1; 0 1 0 1]; 
t = [0 1 1 1]; 
net = perceptron; 
net = train(net,x,t); 
view(net) 
y = net(x); 

 The vector x presents input sequences of the binary 
signals x1 and x2. The array t presents the desired output 
signal d of the logical function OR. After construction and 
training the perceptron circuit, with the functions perceptron 
and train, respectively, the desired output signal y is 
obtained after 3 epochs.  
 The structure scheme of the software perceptron 
realized in MATLAB environment is obtained after applying 
the command view and the scheme is presented in Fig. 5. 
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Fig. 5. Structure of the software-based perceptron circuit 
 
Conclusions 
 The neural networks have very important applications in 
the science – especially for pattern recognition, function 
approximations, logical functions emulations, linear 
separation of patterns and many others. In the present 
investigation a new serial memristor-based synaptic circuit 
is presented and analyzed using the linear dopant drift 
memristor model and the limiting conditions of the BCM 
model also. 
 It is important that the inner resistance of the synapse 
remains constant during the training process. The transfer 
function of the memristor synapse is a linear function of 
time for rectangular voltage pulse sequences.  
 For the operating binary logical input signals short 
bipolar voltage pulses with low level have to be applied – 
positive for logical 1 and negative for logical 0. The 
adjusting signal has to be a sequence of rectangular 
voltage pulses with high level and long pulse duration so to 
be able to change the memristor state and conductance 
respectively. 
 The adjusting signals and the informational binary 
logical signals have to be applied in the same input of the 
memristor synapse but using different time intervals, 
according to the learning rule described with the formulas 
presented above. The classification results are presented 
and the possibility for separating the logical signals for 0 
and 1 is confirmed.  
 For confirmation the result obtained a perceptron for 
emulating the logical function OR is realized in MATLAB 
environment also. The learning process is finished for 
shorter time interval. 
 The memristor-based neural networks have several 
advantages – nanoscale dimensions and high density of 
integration in chips, long term state retention and a good 
possibility for integration the CMOS and memristor layers in 
a single chip.  
 Power consumed for memristor chips is several times 
lower than the power consumed by classical neural 
integrated circuits and due to this the efficiency of the new 
memristor-based chips is higher. The memristor synapses 
are non-volatile unlike classical CMOS neural networks 
which require refreshing the synaptic weights. 
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